NUMBER THEORY PROBLEMS FOR THE UBC-SFU
COMPETITION

PROF. DRAGOS GHIOCA

Problem 1. (7 points.) Show that there is no integer n larger than 1 with the
property that n divides

62571 — 12571 fo5n—t 5ol 4,

Solution. Assume there exists some integer n > 1 dividing 62571 — 125"~ 4
25n—1 5=l g,

Noting that the above number is odd, we also get that n must be odd and so,
n—1>1. We let a be the exponent of 5 in n — 1; we have that « is a non-negative

integer.
Since S(n_1)
5otn— 1
625" — 125" posnl gl 1
5n=l 41
we get that n must divide 5°"~1) 4 1 and furthermore, because
. 510(7171) -1
5(n—1) e =
5 +1= 55(n—1) _ 1’

we get that n must divide 5101 — 1,
Let p be a prime number dividing n — 1; then

p | 510(71—1) _ 1

which shows that the order ord,(5) of 5 modulo p must divide 10(n — 1). We prove
next that ord,(5) doesn’t divide 2(n — 1), which is equivalent with showing that p

doesn’t divide
5200 — 1,

Indeed, if p were to divide

527D 1 = (5n7t 1) - (5" 4 1),
then this means that either

p|5" —Tlorp|5" ! +1.
Hence,
5" =41 (mod p),
which would contradict the fact that
p | 5= _ 53(n=1) 4 g2(n=1) _gn—ly g,

note that p cannot divide 5 because p is not 5 since 5 doesn’t divide

5in=1) _ 53(n=1) 4 52(n=1) _ 5n—1 4 9
So, indeed p doesn’t divide 52(»~1) — 1, which means that

ord,(5) | 10(n — 1) but ord,(5)  2(n — 1).
1
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Hence, noting that 5% divides n — 1, we get that
5T | ord, (5).
Always - using Fermat’s Little Theorem - we have that
ord,(5) | p—1
because p | 5?71 — 1 (note again that p # 5); so, we conclude that
597 | p— 1.
Since the above divisibility holds for each prime p dividing n, we conclude that
actually
59 | n — 1,
thus contradicting the definition of «. (For the last step, note that
p=1 (mod 5**)
for each prime p dividing n and so,

n=1 (mod 5*™)

since n is a product of primes satisfying the above congruence equation.)

Problem 2. (7 points.) Let f € Z[z] be a polynomial of degree 2022 with integer
coefficients. Show that there exist infinitely many positive integers n with the
property that

v/ f(n) is not an integer.

Solution. We argue by contradiction and therefore assume that f(n) is the fifth
power of an integer for each n > N (for some positive integer N). Then replacing
f(z) by f(z + N), we may (and do) assume that {/f(n) € Z for each positive
integer n.

We write f(x) as a product of irreducible polynomials with integer coefficients,
ie.,

f() =A~Hfz-($)e"’

where A is a nonzero integer, the e;’s are positive integers, while the f;’s are
(non-constant, distinct) irreducible polynomials with integer coefficients. Since
the degree of f(z) is 2022, which is not divisible by 5, then there must exist some
ip € {1,...,r} such that e;, is not a multiple of 5.

The next claim is valid for any non-constant polynomial with integer coefficients.

Claim 0.1. Let g € Z[x] be a non-constant polynomial. Then there exist infinitely
many primes p with the property that for some n € N, we have that p | g(n).

Proof of Claim 0.1. We write

m
g(x) = Z cpat,
k=0

where m = deg(g) (so, ¢, # 0). Assuming the conclusion doesn’t hold, then there
exist finitely many primes

P1y--.5Pe
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with the property that each g(n) (for n € N) is divisible only by primes p; from the
above list. If ¢y = 0, then simply

ply(p)
for each prime p and so, the above list of primes can never be exhaustive. So, we
assume from now on that ¢y # 0. Then we let

£
=N 2 .
np = INCy - Di
1=1

for some positive integer N. Then - for any N € N - we have that
g(n1) =co-my

for some integer m, satisfying

¢
m; =1 (mod sz)
i=1

Since we cannot have that g(ny) = ¢ for infinitely many integers ny as above (be-
cause ¢ is not a constant polynomial), we conclude that there exist (even infinitely
many N € N such that for the corresponding) integers nq, we have

¢
g(n1) =co-mq where m; 21 and m; =1 (mod le)
i=1

Thus g(ny) must be divisible by some other prime p not from the above list of the
pi’s. This completes the proof of Claim 0.1. d

Now, returning to our problem, since the polynomials f; are distinct, then they
are coprime and so, for each j # 4o, there exist some polynomials P; and (); along
with some nonzero integer constants B; such that

(1) Pj(x) - fiy () + Q;(x) - fi(x) = B;.
(This is just the Euclidean algorithm for polynomials.)

Similarly, because f;, is an irreducible non-constant polynomial, then there exist
some polynomials P (z) and Q;,(x) along with a nonzero integer B;, such that
(2) ‘Plo(x) flo(x)+Qlo(x) fllo('r) :Bi()?
where f; is simply the derivative of the polynomial f;,. (Here we use the fact that
the polynomial f;,(x) cannot be divisible by another polynomial - non-constant
and with integer coefficients - of smaller degree; thus f;, would have to be coprime
with any other nonzero polynomial of smaller degree than deg(f;,).)

Let p be a prime number satisfying the following conditions:

(i) there exists n € N such that p | f;, (n);
(ii) p > |A[; and

(iii) p > max]_, |B;l.

The existence of such a prime is guaranteed by Claim 0.1 applied to f;,.

Then for any n € N, if p | f;;(n), then condition (iii) above applied to each B;
for j # ig (see equation (1)) yields the fact that p t f;(n) for each j # .

Now, we immediately compute that

(3) fn+p)=f(n)+pf'(n) (mod p?);
in particular, we get that if p | f(n) then also p | f(n + p).
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Condition (iii) above applied to B;, (see equation (2)) yields that if p | f(n) then
p1 f'(n). So, using this information in equation (3) yields that we cannot have that
both f(n) and f(n + p) are divisible by p°.

Therefore, we obtained the existence of some prime p which doesn’t divide A
(see condition (ii) above) and moreover for some positive integer ng, we have that

(1) p| fiy(no) but p°{ fi,(no);

(2) p1 fj(no) for each j # i.
Combining conditions (1)-(2) with the fact that p{ A and with the fact that e;, is
not divisible by 5, we get that the exponent of p in f(ng) is not divisible by 5, thus

contradicting the fact that {/f(no) € Z.
This concludes our proof.



