
NUMBER THEORY PROBLEMS FOR THE UBC-SFU

COMPETITION

PROF. DRAGOS GHIOCA

Problem 1. (7 points.) Show that there is no integer n larger than 1 with the
property that n divides

625n−1 − 125n−1 + 25n−1 − 5n−1 + 1.

Solution. Assume there exists some integer n > 1 dividing 625n−1 − 125n−1 +
25n−1 − 5n−1 + 1.

Noting that the above number is odd, we also get that n must be odd and so,
n− 1 > 1. We let α be the exponent of 5 in n− 1; we have that α is a non-negative
integer.

Since

625n−1 − 125n−1 + 25n−1 − 5n−1 + 1 =
55(n−1) + 1

5n−1 + 1

we get that n must divide 55(n−1) + 1 and furthermore, because

55(n−1) + 1 =
510(n−1) − 1

55(n−1) − 1
,

we get that n must divide 510(n−1) − 1.
Let p be a prime number dividing n− 1; then

p | 510(n−1) − 1

which shows that the order ordp(5) of 5 modulo p must divide 10(n− 1). We prove
next that ordp(5) doesn’t divide 2(n− 1), which is equivalent with showing that p
doesn’t divide

52(n−1) − 1.

Indeed, if p were to divide

52(n−1) − 1 =
(
5n−1 − 1

)
·
(
5n−1 + 1

)
,

then this means that either

p | 5n−1 − 1 or p | 5n−1 + 1.

Hence,
5n−1 ≡ ±1 (mod p),

which would contradict the fact that

p | 54(n−1) − 53(n−1) + 52(n−1) − 5n−1 + 1;

note that p cannot divide 5 because p is not 5 since 5 doesn’t divide

54(n−1) − 53(n−1) + 52(n−1) − 5n−1 + 1.

So, indeed p doesn’t divide 52(n−1) − 1, which means that

ordp(5) | 10(n− 1) but ordp(5) - 2(n− 1).
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Hence, noting that 5α divides n− 1, we get that

5α+1 | ordp(5).

Always - using Fermat’s Little Theorem - we have that

ordp(5) | p− 1

because p | 5p−1 − 1 (note again that p 6= 5); so, we conclude that

5α+1 | p− 1.

Since the above divisibility holds for each prime p dividing n, we conclude that
actually

5α+1 | n− 1,

thus contradicting the definition of α. (For the last step, note that

p ≡ 1 (mod 5α+1)

for each prime p dividing n and so,

n ≡ 1 (mod 5α+1)

since n is a product of primes satisfying the above congruence equation.)

Problem 2. (7 points.) Let f ∈ Z[x] be a polynomial of degree 2022 with integer
coefficients. Show that there exist infinitely many positive integers n with the
property that

5
√
f(n) is not an integer.

Solution. We argue by contradiction and therefore assume that f(n) is the fifth
power of an integer for each n > N (for some positive integer N). Then replacing

f(x) by f(x + N), we may (and do) assume that 5
√
f(n) ∈ Z for each positive

integer n.
We write f(x) as a product of irreducible polynomials with integer coefficients,

i.e.,

f(x) = A ·
r∏
i=1

fi(x)ei ,

where A is a nonzero integer, the ei’s are positive integers, while the fi’s are
(non-constant, distinct) irreducible polynomials with integer coefficients. Since
the degree of f(x) is 2022, which is not divisible by 5, then there must exist some
i0 ∈ {1, . . . , r} such that ei0 is not a multiple of 5.

The next claim is valid for any non-constant polynomial with integer coefficients.

Claim 0.1. Let g ∈ Z[x] be a non-constant polynomial. Then there exist infinitely
many primes p with the property that for some n ∈ N, we have that p | g(n).

Proof of Claim 0.1. We write

g(x) =

m∑
k=0

ckx
k,

where m = deg(g) (so, cm 6= 0). Assuming the conclusion doesn’t hold, then there
exist finitely many primes

p1, . . . , p`
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with the property that each g(n) (for n ∈ N) is divisible only by primes pi from the
above list. If c0 = 0, then simply

p | g(p)

for each prime p and so, the above list of primes can never be exhaustive. So, we
assume from now on that c0 6= 0. Then we let

n1 = Nc20 ·
∏̀
i=1

pi

for some positive integer N . Then - for any N ∈ N - we have that

g(n1) = c0 ·m1

for some integer m1 satisfying

m1 ≡ 1 (mod
∏̀
i=1

pi).

Since we cannot have that g(n1) = c0 for infinitely many integers n1 as above (be-
cause g is not a constant polynomial), we conclude that there exist (even infinitely
many N ∈ N such that for the corresponding) integers n1, we have

g(n1) = c0 ·m1 where m1 6= 1 and m1 ≡ 1 (mod
∏̀
i=1

pi).

Thus g(n1) must be divisible by some other prime p not from the above list of the
pi’s. This completes the proof of Claim 0.1. �

Now, returning to our problem, since the polynomials fi are distinct, then they
are coprime and so, for each j 6= i0, there exist some polynomials Pj and Qj along
with some nonzero integer constants Bj such that

(1) Pj(x) · fi0(x) +Qj(x) · fj(x) = Bj .

(This is just the Euclidean algorithm for polynomials.)
Similarly, because fi0 is an irreducible non-constant polynomial, then there exist

some polynomials Pi0(x) and Qi0(x) along with a nonzero integer Bi0 such that

(2) Pi0(x) · fi0(x) +Qi0(x) · f ′i0(x) = Bi0 ,

where f ′i0 is simply the derivative of the polynomial fi0 . (Here we use the fact that
the polynomial fi0(x) cannot be divisible by another polynomial - non-constant
and with integer coefficients - of smaller degree; thus fi0 would have to be coprime
with any other nonzero polynomial of smaller degree than deg(fi0).)

Let p be a prime number satisfying the following conditions:

(i) there exists n ∈ N such that p | fi0(n);
(ii) p > |A|; and

(iii) p > maxri=1 |Bi|.
The existence of such a prime is guaranteed by Claim 0.1 applied to fi0 .
Then for any n ∈ N, if p | fi0(n), then condition (iii) above applied to each Bj

for j 6= i0 (see equation (1)) yields the fact that p - fj(n) for each j 6= i0.
Now, we immediately compute that

(3) f(n+ p) ≡ f(n) + pf ′(n) (mod p2);

in particular, we get that if p | f(n) then also p | f(n+ p).
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Condition (iii) above applied to Bi0 (see equation (2)) yields that if p | f(n) then
p - f ′(n). So, using this information in equation (3) yields that we cannot have that
both f(n) and f(n+ p) are divisible by p5.

Therefore, we obtained the existence of some prime p which doesn’t divide A
(see condition (ii) above) and moreover for some positive integer n0, we have that

(1) p | fi0(n0) but p5 - fi0(n0);
(2) p - fj(n0) for each j 6= i0.

Combining conditions (1)-(2) with the fact that p - A and with the fact that ei0 is
not divisible by 5, we get that the exponent of p in f(n0) is not divisible by 5, thus

contradicting the fact that 5
√
f(n0) ∈ Z.

This concludes our proof.


