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CALCULUS RELATED QUESTIONS

Problem 1
A function f : R → R is said to have the intermediate value property
if for any a < b and any u strictly between f(a) and f(b), there is a c with
a < c < b and f(c) = u. Find all functions f : R → R with the intermediate
value property such that for some n ≥ 1, f (n)(x) = −x for all x (where f (n)

denotes the n-fold composition f ◦ f ◦ . . . ◦ f).
SOLUTION

The only solution which satisfies the conditions of problem 1 is the func-
tion f(x) = −x. The proof will make use of the following Lemma.

Lemma 0.1. Let f : [a, b] → R be a one-to-one function which has the
intermediate value property. Then f is strictly monotone.

Proof. Without loss of generality, we may assume that f(a) < f(b). Assume
f is not strictly increasing. Then there are c, d ∈ [a, b] such that c < d but
f(c) ≥ f(d). Since f is injective, f(c) > f(d). Suppose for contradiction
that f(a) > f(c). Then f(c) < f(a) < f(b) and there is an a′ ∈ [b, c]
such that f(a′) = f(a), contradicting injectivity. We can similarly exclude
f(a) > f(d). Thus f(a) ≤ f(c) and f(a) ≤ f(d). Note that a ̸= d since this
would imply that f(c) = f(d) = f(a). Whence we conclude by injectivity
that f(c) > f(d) > f(a) and the intermediate value property shows that
there is a d′ ∈ [a, c] such that f(d′) = f(d), contradicting injectivity. Hence
f is strictly monotone.

Let f satisfy the iterative property in the statement of the problem. The
condition implies that f (n) (and therefore also f) is a bijection. Hence by
the earlier lemma, f is strictly monotone. Since −x is strictly decreasing
and f is strictly monotone, we conclude that f is also strictly decreasing.
Furthermore

f(−x) = f [f (n)(x)] = f (n)[f(x)] = −f(x)
so f is odd. In particular, f(0) = 0. Combining this with the fact that f
is strictly decreasing implies that xf(x) < 0 for all x ̸= 0. Indeed, if x > 0,
then f(x) < f(0) = 0, and conversely if x < 0.

Now pick an x0 > 0 and let xk = f(xk−1). Then xn = −x0. We claim
that (−1)kxk > 0. Indeed, the base case k = 0 is clear, hence suppose
the inequality has been proved for some k ≥ 0. Then xkxk+1 < 0. Since
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(−1)kxk > 0 it is immediate that (−1)k+1xk+1 > 0, completing the induction.
In particular, (−1)nxn = (−1)n+1x0 > 0, so n is odd.

Finally, assume that x1 > −x0. Since f is decreasing and odd,

x2 = f(x1) < f(−x0) = −f(x0) = −x1

so we obtain inductively that (−1)kxk > (−1)k+1xk+1. This yields x0 >
−xn, a contradiction. Similarly, the assumption x1 < −x0 leads to the
contradiction xn < −x0. Hence it follows that x1 = −x0 and f(x) = x for all
x > 0. Since f is odd, this implies immediately that f(x) = −x for all x.

Problem 2
Find the value of the integral below or prove that it diverges:∫ +∞

0
exp(−x2 sin x2) dx.

SOLUTION
Let’s prove that the integral diverges. By definition of an improper inte-

gral, one has∫ +∞

0
exp(−x2 sin x2) dx = lim

A→∞

∫ A

0
exp(−x2 sin x2) dx. (1)

Let N be the largest integer such that πN ≤ A. Since the function under
the integral is positive, we also have∫ A

0
exp(−x2 sin x2) dx ≥

∫ πN

0
exp(−x2 sin x2) dx. (2)

For N = 1, 2, . . . one also has
∫ πN

0
exp(−x2 sin x2) dx =

N∑
n=1

∫ πn

π(n−1)
exp(−x2 sin x2) dx. (3)

Consider an integral
∫ πn

π(n−1) exp(−x2 sin x2) dx instead. Substitute x = πn−t,
then ∫ πn

π(n−1)
exp(−x2 sin x2) dx =

∫ π

0
exp(−(πn − t)2 sin t2) dt. (4)
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Recalling the inequality | sin t| ≤ |t|, which is true for all real numbers t, one
gets (πn − t)2 sin t2 ≤ (πn − t)2t2 ≤ (πn)2t2, which leads to∫ π

0
exp(−(πn − t)2 sin t2) dt ≥

∫ π

0
exp(−π2n2t2) dt. (5)

Let’s substitute πnt = ξ, then we get
∫ π

0
exp(−π2n2t2) d = 1

πn

∫ π2n

0
exp(−ξ2) dξ ≥ 1

πn

∫ π2

0
exp(−ξ2) dξ. (6)

Let C =
∫ π2

0 exp(−ξ2) dξ, which is some positive real number. from the
inequalities above, one gets

∫ A

0
exp(−x2 sin x2) dx ≥

N∑
n=1

C

πn
. (7)

Now, since

lim
A→+∞

N∑
n=1

C

πn
= lim

N→+∞

N∑
n=1

C

πn
=

∞∑
n=1

C

πn
= +∞

and the harmonic series ∑∞
n=1

1
n

is divergent, we have that the integral is
indeed divergent.

4



LINEAR ALGEBRA

Problem 1
An n-dimensional vector space V and a linear transformation θ : V → V are
given. Consider the powers of θ, i.e. 1, θ, θ2, . . . . Prove that there exists a
nonzero integer s such that

V = im(θs) ⊕ ker(θs).

SOLUTION
First, let’s prove the following result:

Lemma 0.2. If W1 and W2 are subspaces of a vector space V , then we have

dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2).

Proof. Let dim(W1 ∩ W2) = k and let {u1, . . . , uk} be a basis of W1 ∩ W2.
Extend this basis to a basis {u1, . . . , uk, v1, . . . , vm} of W1 and to a basis
{u1, . . . , uk, w1, . . . , wn} of W2. hence, dim(W1) = k + m and dim(W2) =
k + n. Recall that

W1 + W2 =({u1, . . . , uk, v1, . . . , vm} ∪ {u1, . . . , uk, w1, . . . , wn})
=({u1, . . . , uk, v1, . . . , vm, w1, . . . , wn}).

To show that dim(W1 +W2) = (k+m)+(k+n)−k = k+m+n, one needs to
show that the set {u1, . . . , uk, v1, . . . , vm, w1, . . . , wn} is linearly independent.
For this, suppose

α1u1 + . . . + αkuk + β1v1 + . . . + βmvm + γ1w1 + . . . + γnwn = 0. (8)

Let
v = α1u1 + . . . + αkuk + β1v1 + . . . + βmvm ∈ W1.

Then
v = −(γ1w1 + . . . + γnwn) ∈ W2.

So v ∈ W1 ∩ W2 and since this has {u1, . . . , uk} as a basis, there exists
λ1, . . . , λk such that

v = λ1u1 + . . . + λkuk.
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Together it implies that

λ1u1 + . . . + λkuk + γ1w1 + . . . + γnwn = 0,

and since {u1, . . . , uk, w1, . . . , wn} is linearly independent, we have

λ1 = . . . = λk = γ1 = . . . = γn = 0.

Substituting this into 8 gives

α1u1 + . . . + αkuk + β1v1 + . . . + βmvm = 0,

and since {u1, . . . , uk, v1, . . . , vm} is linearly independent, we get

α1 = . . . = αk = β1 = . . . = βm = 0.

For the given θ : V → V , it is obvious that ker(θ) ⊆ ker(θ2) ⊆ . . . is an
ascending chain of the subspaces of V . As V is finite-dimensional, it follows
that there exists an s ∈ N such that ker(θs) = ker(θs+1).

We claim that if ker(θs) = ker(θs+1), then ker(θs) = ker(θs+k) for all
k ∈ N. This can be proved using induction on k:

1. For k = 1, there is nothing to prove.

2. Suppose the assertion holds for k.

3. To prove the assertion for k + 1, note first that ker(θs) ⊆ ker(θs+k+1).
Next, consider arbitrary x ∈ ker(θs+k+1). We get θs+k(θx) = 0. That
is, θx ∈ ker(θs+k), which yields θx ∈ ker(θs). This implies θs+1x = 0
which means x ∈ ker(θs+1). But ker(θs+1) = ker(θs). Thus, x ∈
ker(θs). As x ∈ ker(θs+k+1) was arbitrary, we get ker(θs+k+1) ⊆ ker(θs).
Therefore, ker(θs+k+1) = ker(θs), proving the claim.

We now show that
V = im(θs) ⊕ ker(θs),

where s is as in the above. Bby the Rank-Nullity Theorem dim(im(θs)) +
dim(ker(θs)) = dim V . On the other hand, we have Lemma 0.2, which in view
of the preceding equality together with the fact that both im(θs) and ker(θs)
are subspaces of V , implies V = im(θs) ⊕ ker(θs) as soon as we show that
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im(θs)∩ker(θs) = {0}. To see this, consider an arbitrary x ∈ im(θs)∩ker(θs).
It follows that there exists x1 ∈ V such that x = θsx1, from which, we
obtain θs+sx1 = 0 because x ∈ ker(θs). On the other hand, by the claim we
made in the above, we have ker(θs+s) = ker(θs), yielding x1 ∈ ker(θs). In
other words, x = θsx1 = 0. Since x ∈ im(θs) ∩ ker(θs) was arbitrary, we
conclude that im(θs) ∩ ker(θs) = {0}, which is what we want. Therefore,
V = im(θs) ⊕ ker(θs), completing the proof.

Problem 2
Let A = (aij) be an n × n matrix over the field of real numbers such that
for all i we have ∑n

j=1 aij = a. Consider a natural number n = 2, 3, . . .. If
An = I, find all possible values of a.

SOLUTION
Let’s first consider the case with A2 = I. Let A = (aij) ∈ Mn(R). Let

(A2)ij denote the ij entry of the matrix A2. Since A2 = I, we have
n∑

i=1

n∑
j=1

(A2)ij =
n∑

i=1

n∑
j=1

(I)ij = n.

On the other hand, we have
n∑

i=1

n∑
j=1

(A2)ij =
n∑

i=1

n∑
j=1

n∑
k=1

aikakj =
n∑

i=1

n∑
k=1

aik

n∑
j=1

akj =

=
n∑

i=1

n∑
k=1

aika = a
n∑

i=1

n∑
k=1

aik = a
n∑

i=1
a = na2

Therefore, na2 = n, yielding a = ±1. It is also worth to note that both cases
indeed happen because A = ±I yields a = ±1, respectively.

Repeated application of the above procedure yields an = 1, which would
give a = 1 if n is even, and a = ±1 is n is odd.
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DISCRETE MATH
by Jozsef Solymosi

Problem 1
Let Gn = [n] × [n] denote the points of the integer grid, i.e.

Gn = {(a, b)|a, b ∈ N, 1 ≤ a, b ≤ n}.

Prove the following statement: If we have a point set S ⊂ Gn and

|S| ≥ (2n) 3
2

then S contains five points,

p1 = (a1, b1), p2 = (a2, b2), p3 = (a3, b3), p4 = (a4, b4), p5 = (a5, b5)

such that a1 = a2, b1 = b4, a4 = a5, b2 = b3 and a3 + b3 = a5 + b5.
SOLUTION

It is easier to solve the problem if we add an extra point, q = (qx, qy)
where qx = a3 and qy = b1. In this way, we are looking for three vertical
point-pairs, (p1, p2), (q, p3) and (p4, p5). See the picture below.

Figure 1: A possible configuration of the 5 + 1 points

We will continue to work with the vertical pairs.

X := {(x1, y1), (x2, y2) ∈ S|x1 = x2, y1 > y2}.
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To estimate the size of X, we count the number of point pairs in the
same column. If there are mi points in column i (points having the same x-
coordinate) then the number of pairs is

(
mi

2

)
. The cardinality of X is minimal

if every column has about the same number of points. We have

∑
i

(
mi

2

)
≥ n

( 1
n

∑
i mi

2

)

|X| ≥ n

(
|S|/n

2

)
.

Now we remove the elements of X for which the number of vertical pairs
with the same y-coordinates is less than three. Then, if we can find two
vertical pairs, (q, p3) and (p4, p5), satisfying qx = a3, qy = b4, a4 = a5, and
a3 + b3 = a5 + b5 then there is always a choice for (p1, p2) ∈ X with a3 ̸=
a1 = a2 ̸= a4 such that b1 = b4 and b2 = b3 providing the five points we are
looking for.

There are
(

n
2

)
possible x-coordinate pairs of the elements of X. If an x-

coordinate pair appears in less than three elements of X, then remove these
elements from X. The remaining set is denoted by X ′. Since we removed at
most two elements of X from the “sparse” x-coordinate pairs, we have

|X ′| ≥ |X| − 2
(

n

2

)
.

Let’s partition the elements of X ′ into partition classes, Cs,t depending
on the y-coordinate of their first point and the sum of the coordinates of
their second point.

Cs,t = {(x1, y1), (x2, y2) ∈ X ′|y1 = s, x2 + y2 = t}.

There are at most n − 1 possible values for s, and at most 2n − 2 possible
values for t. (In any point pair, in the upper point s > 1 and for the lower
point t < 2n − 1) The number of partition classes is at most 2(n − 1)2. If
|X ′| > 2(n − 1)2 then we have two vertical pairs in it, (q, p3) and (p4, p5),
satisfying qx = a3, qy = b4, a4 = a5, and a3 + b3 = a5 + b5. Putting everything
together, we get that if

n

(
|S|/n

2

)
− 2

(
n

2

)
≥ 2n(n − 1) > 2(n − 1)2
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(
|S|/n

2

)
≥ 3(n − 1)

then there are five points in S satisfying the required conditions. What
is left is to check that if |S| ≥ (2n) 3

2 then the above inequality holds.

Problem 2
Let’s write 100 as the sum of 50 numbers, where the summands are integers
between one and 50.

x1 + x2 + . . . + x49 + x50 = 100 xi ∈ N, 1 ≤ xi ≤ 50.

An I ⊂ [50] = {1, 2, 3, . . . , 49, 50} is called a halving partition set if the xi-s
can be partitioned into two sets, both having the same sum, 50.∑

i∈I

xi =
∑

i∈{[50]\I}
xi.

Prove that there is always a halving partition set.
SOLUTION

If all xi are the same, then there are
(

50
25

)
halving partition sets. Let us

suppose that x1 < x2 and consider the following 51 numbers.

b1 = x1, b2 = x2, b3 = x1 + x2, b4 = x1 + x2 + x3, . . . , b51 =
50∑

i=1
xi = 100.

This is an increasing sequence. There are 51 positive integers, so at least two
of them are the same modulo 50. Let us suppose that bi ≡ bj (mod 50) for
some i < j indices. This is only possible if bj − bi = 50. If i ̸= 2, the set

I = {i, i + 1, . . . , j − 1}
is a halving partition set with j ≥ i + 1. The i = 2 case needs a slightly
different treatment. If i = 2 then

I = {1, 3, . . . , j − 1}
is a halving partition set.

By the definition, the complement of I is also a halving partition set.
I ′ = I = [50] \ {i, . . . , j − 1}.

Remark: If one of the xi-s is 50, then there are exactly two halving partition
sets. There are different possible arguments giving the same answer.
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