UBC Math Circle 2018 Problem Set 3

I. INTRODUCTORY PROBLEMS

1. Let MNP be a triangle with vertices M (1,4), N(5,3), and P(5,¢). Determine the sum
of the two values of ¢ for which the area of MNP is 14.

Solution: (Stolen from Euclid 2015) Points N(5,3) and P(5,c¢) lie on the same
vertical line. We can consider NP as the base of M NP. Suppose that the length
of this base is b. The corresponding height of M NP is the distance from M(1,4)
to the line through N and P. Since M lies on the vertical line z = 1 and N and
P lie on the vertical line x = 5, then the height is h = 4. Since the area of M NP
is 14, then 1bh = 14. Since h = 4, then 1b(4) = 14 or 2b = 14 and so b = 7.
Therefore, P(5,¢) is a distance of 7 units away from N(5,3). Since NP is a vertical
line segment, then ¢ = 34 7 or ¢ = 37, and so ¢ = 10 or ¢ = 4. The sum of these
two values is 10 + (4) = 6. (We could also have noted that, since the two values of ¢
will be symmetric about y = 3, then the average of their values is 3 and so the sum
of their values is 2 -3 = 6.)

2. For some positive integers k, the parabola with equation y = x—:5 intersects the circle
with equation 22 + y* = 25 at exactly three distinct points A, B and C. Determine all
such positive integers k for which the area of triangle ABC' is an integer.

Solution: (also stolen from Euclid 2015) First, we note that since k is a positive
integer, then k1. Next, we note that the given parabola passes through the point
(0, 5) as does the given circle. (This is because if # = 0, then y = %5 = 5 and if
(z,y) = (0,5), then 2% +y? = 0%+ (5)* = 25, so (0, 5) satisfies each of the equations.)
Therefore, for every positive integer k, the two graphs intersect in at least one point.
If y = 5, then 22 + (5)? = 25 and so 2> = 0 or x = 0. In other words, there is
one point on both parabola and circle with y = 5, namely (0, 5). Now, the given
circle with equation 2% + y* = 25 = 52 has centre (0, 0) and radius 5. This means
that the y-coordinates of points on this circle satisfy 5y5. To find the other points
of intersection, we re-write y = x—]:5 as ky = 2?5k or 2* = ky + 5k and substitute
into 22 + y? = 25 to obtain (y +5)(y + (k —5)) =0 and soy = =5 or y = 5 — k.
(We note that since the two graphs intersect at y = 5, then (y + 5) was going to be
a factor of the quadratic equation y* + ky + (5k25) = 0. If we had not seen this,
we could have used the quadratic formula.) Therefore, for y = 5k to give points
on the circle, we need 55k and 5k5. This gives k10 and k0. Since k is a positive
integer, the possible values of k to this point are k = 1,2,3,4,5,6,7,8,9,10. If £ =1,
then y = 51 = 4. In this case, 22 + 4% = 25 or 22 = 9 and so x = 3. This gives
the two points (3, 4) and (3, 4) which lie on the parabola and circle. Consider the




three points A(3,4), B(3,4) and C(0,5). Now AB is horizontal with AB = 3(3) = 6.
(This is the difference in x-coordinates.) The vertical distance from AB to C' is
4(5) = 9. (This is the difference in y-coordinates.) Therefore, the area of triangle
ABC is 1(6)(9) = 27, which is a positive integer. We now repeat the calculations
for k =1,2,3,4,5,6,7,8,9,10. When k£ = 10, we have y = 5k = 5 and = = 0 only,
so there is only one point of intersection. Finally, the values of k for which there
are three points of intersection and for which the area of the resulting triangle is a
positive integer are k = 1,2,5,8,9.

II. INTERMEDIATE PROBLEMS

3. Let P be a point in the interior of AABC. Let [XY Z] denote the area of AXY Z. Let
lines AP, BP, and C'P intersect BC', CA, and AB at D, E, and F respectively. Prove
that [PAF] + [PBD] + [PCE] = 1[ABC] if and only if P lies on at least one of the
medians of AABC.

Solution: We can use barycentric coordinates.
Let P=(a:f:7). Then D=(0:5:7), E=(a:0:7),and F'= (a: §:0). Then
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Now, if we plug in a = 3, we see that the two sides are indeed equal. It suffices to
show that the above equation is equivalent to the following

(a = B)(B -1 —0a) = (a—B)(1—a—28)1—2a—F) =0,

Pray really hard.

4. (APMO 2015) Let ABC be a triangle, and let D be a point on side BC. A line through D
intersects side AB at X and ray AC' at Y. The circumcircle of triangle BX D intersects
the circumcircle w of triangle ABC again at point Z distinct from B. The lines ZD and
ZY intersect w again at V' and W respectively. Prove that AB = VIV.



Solution: It suffices to show that L BCA = LV ZW.

Miquel’s quadrilateral Theorem tells us that the circumcircles of the four triangles in
a complete quadrilateral all meet at one point (the Miquel point). In this problem,
consider the complete quadrilateral consisting of the lines AB, BC, C'A, and XY
Since the circumcircle of ABX D meets w at Z, and the circumcircle of AAXY
does not intersect B, the point Z must be the Miquel point. Hence Z lies on the
circumcircle of ACDY . Tt follows that (using directed angles modulo 180°)

AVIW =LV ZY = LDZY = £LDCY = £BCY = £BCA.

III. ADVANCED PROBLEMS

5. Triangle ABC' has perimeter 4. Points X and Y lie on rays AB and AC' respectively,
such that AX = AY = 1. Segments BC' and XY intersect at M. Prove that the
perimeter of either AABM or AACM is 2.

Solution: Without loss of generality, let AC' > AY and AX < AB.

Recall that the length of the tangent from a point to its corresponding excircle is
equal to the semiperimeter. Let U and V lie on rays AB and AC respectively, such
that AU = AV = 2. Then, the A-excircle (denote this «) is tangent to AB and AC
at U and V respectively. Let o be tangent to BC at T'.

Let’s construct a circle w with zero radius at A. Then, X and Y lie on the radical
axis of @ and w. Hence M also lies on the radical axis, and AM = MT.

It follows that AB + BM + AM = AB+ BM + MT = AB + BT = AB+ BU =2

6. (USAMO 2009) Trapezoid ABCD, with AB || CD, is inscribed in a circle w, and point
G lines inside the triangle BC'D. Rays AG and BG meet w again at points P and
respectively. Let the line through G parallel to AB intersect BD and BC at points R
and S respectively. Prove that quadrilateral PQRS is cyclic if and only if BG bisects
/CBD.

Challenge/Hint/Trap: Solve this problem using inversion (of course, you could also solve
it without using inversion).

Solution: There are six points on w, so let’s use inversion to transform them into
collinear points. This means we want to invert around a point on w, let’s choose B
because it has a lot of lines passing through it. The radius of inversion is arbitrary.




e The cyclic trapezoid ABC'D is transformed into the point B, and three collinear
points A’, C’, and D’. Since AB || C'D, we have A’B tangent to the circumcircle
of ABC'D'.

e The point G is transformed into some point G’ outside of ABC'D’.

e The point P is transformed to the intersection of the line A’C" and the circum-
circle of ABA'G.

e The point @) is transformed to the intersection of the lines A’C" and BG'.

e The points R and S are transformed onto the circle through B and G’ tangent
to A’B. Moreover, R’ lies on the line BD’ and S’ lies on the line BC".

We want to show that P'Q'R'S’ is cyclic if and only if BG’ bisects ZC'BD’ =
ZR'BS'".

Observe that C"D’ and R'S’ remain parallel because there is a dilation that takes
the circumcircle of BC'D’ to the circumcircle of BR'S’. This means that P'Q)'R'S’
is a trapezoid with P'Q’ || RS, hence it suffices to prove P'S’ = Q'R’ if and only if
BG bisects ZR'BS'.

Let P'G" meet the circumcircle of BR'S" again at X. Then

LQPG = LA'P'G' = LABG = {BXG,

so BX || R'S’, hence BR'S’X is an isoceles trapezoid.

Observe that G is the midpoint of arc R'S’ if and only if BG’ bisects ZR'BS’. 1f
G’ is the midpoint of arc R'S’, then by symmetry, P'Q’R'S’ is also isoceles, hence
cyclic. If P'Q'R'S’" is cyclic, then it must be isoceles, whence by symmetry G’ is the
midpoint of arc R'S".

7. A convex and bounded set C' in R? has boundary dC = B. Prove that the set of points
D=B+B={p+q|pqe€ B} is also a convex set. A set C' is called convex if for any
two points z,y € C, then tx + (1 — t)y € C for any t € (0, 1).

Solution: Consider the problem in R2 If its true in R?, then there is natural
extension to R3. Observe that any point in D can be written as twice a point
in C, so we need to show that for any point x € C' there exists p,q € C such
that (p + q)/2 = x. Consider if we rotated a line around z, this let’s construct a
continuous function that returned the difference between |p — x| and |¢ — x|. Since
rotating the line by 180° switches the role of p and ¢, we can apply the intermediate
value theorem to find that there exists a pair of points p and ¢ colinear with x such




that |p — x| = |¢ — x|, so we are done.




