
UBC Math Circle 2018 Problem Set 4

I. Introductory Problems

1. Prove that if ab is a perfect square and (a, b) = 1, then both a and b must be perfect
squares.

Solution: Since we know ab is a perfect square, we know that all exponents in the
prime factorization must be even numbers and since we know a and b are relatively
co-prime (their GCD is 1), we know that for each prime, if its exponent is non-zero
in a, it must be zero in b (and vice versa). Together this shows that all exponents in
the prime factorization of a must be even, and the same goes for all the exponents
in the prime factorization of b. So both must be perfect squares.

2. Solve the congruence 42x ≡ 12 (mod 90).

Solution: We have gcd(42, 90) = 6, so there is a solution since 6 is a factor of
12. Solving the congruence 42x ≡ 12 (mod 90) is equivalent to solving the equation
42x = 12 + 90q for integers x and q. This reduces to 7x = 2 + 15q, or 7x ≡ 2 (mod
15). We next use trial and error to look for the multiplicative inverse of 7 modulo
15. The numbers congruent to 1 modulo 15 are 16, 31, 46, 61, etc., and 14, 29, 44,
etc. Among these, we see that 7 is a factor of 14, so we multiply both sides of the
congruence by 2 since (2)(7) = 14 ≡ 1 (mod 15). Thus we have 14x ≡ 4 (mod 15),
or x ≡ 11 (mod 15). The solution is x ≡ 11, 26, 41, 56, 71, 86 (mod 90).

3. Find all solutions to the congruence 55x ≡ 36 (mod 75).

Solution: There is no solution, since gcd(55, 75) = 5 is not a divisor of 36.

4. Is 4100 divisible by 3? Show that a number is divisible by 9 if the sum of it’s digits is
divisible by 9.

Solution: No, since 4100 ≡ 1100 ≡ 1 (mod 3). Or you can write 2200 as the prime
factorization, and then gcd(3, 2200) = 1.

Let (abcdef . . . k)10 be a number in base ten. Then we can rewrite abcdef . . . k
as a(10k−1) + b(10k−2) + . . . k(100) ≡ a(1) + b(1) + . . . k(1) (mod 9) and therefore if
this is equivalent to 0 (mod 9) then 9|(abcdef . . . k)10.
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5. Consider the integer Qn = n! + 1, where n is a positive integer. Show that Qn has a
prime factor greater than n, use this to argue that there are infinitely many primes.
(Hint: What if Qn has a prime factor less than n?)

Solution: Suppose that Qn has a prime factor p ≤ n. Then p divides n! and since
p divides Qn also, p divides their difference, which is 1 – a contradiction (p is an
integer greater than 1). Therefore Qn must have a prime factor greater than n
(every positive integer has at least one prime factor). Now for any integer n, there
is a prime p greater than n. Since n is arbitrary, we conclude that there can be no
largest prime number; there are infinitely many primes.

II. Intermediate Problems

6. Let n ∈ N be composite and greater than 4. Show that n divides (n− 1)!.

Solution: Since n is composite, we can write n = ab where a, b > 1.

• Case 1: a 6= b: Then since a and b divide n, they are both less than n. Since
a and b are distinct integers which occur in the sequence 1, 2, . . . , n− 2, n− 1,
we conclude that ab = n divides (n− 1)!.

• Case 2: a=b, then n = a2. Note that a > 2 (since 22 = 4 < n), such that
n = a2 > 2a > a. Since a and 2a are distinct and occur in the sequence
1, 2, . . . , n − 2, n − 1, we deduce that 2a · a = 2n divides (n − 1)!. Since n
divides 2n, we conclude that n divides (n− 1)!.

7. For this question, consider only positive integers. Let p and q be distinct primes, and let
a and b be integers. Define τ(n) to be the function which returns the number of distinct
divisors of n (e.g. τ(4) = 3).

(a) What are τ(pa), τ(qb), and τ(paqb)? Argue that τ(paqb) = τ(pa) · τ(qb).

Solution: The factors of pa are the integers 1, p, p2, . . . , pa−1, pa – so there are
a + 1 factors of pa. Similarly there are b + 1 factors of qb. Using the counting
principle there are (a + 1) · (b + 1) factors of paqb. We see that τ(paqb) =
τ(pa) · τ(qb).

(b) Argue that for a product of prime powers
∏r

i=1 p
ai
i (i.e. an r number of primes p1

to pr where each ai ≥ 1) that τ(
∏r

i=1 p
ai
i ) =

∏r
i=1 τ(paii ) (with this property τ is

called a multiplicative function).
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Solution: The factors of
∏r

i=1 p
ai
i are of the form

∏r
i=1 p

bi
i , where for each i:

0 ≤ bi ≤ ai. We use the counting principle in the same way as for (a): there are
a1 + 1 possibilities for powers of the first prime, a2 + 1 possibilities for powers
of the second prime, etc. such that there are

∏r
i=1(ai + 1) =

∏r
i=1 τ(paii ) factors

of
∏r

i=1 p
ai
i .

(c) Classify all forms of integers with an odd number of distinct divisors.

Solution: Our goal is to find all integers n such that τ(n) is even. Let n have
prime factorization n =

∏r
i=1 p

ai
i (i.e. n has r distinct prime factors p1 to pr with

ai ≥ 1. Using part (b), we can expand τ(n) =
∏r

i=1(ai+1). It is straightforward
that this product is odd if and only if every ai + 1 is odd, if and only if every ai
is even. We conclude that all integers with an odd number of distinct divisors
are of the form n =

∏r
i=1 p

ai
i , where each ai ≥ 1 is even.

(d) Classify all forms of integers with exactly 77 distinct divisors (i.e. describe in some
way or with some formula the integers with 77 divisors).

Solution: Our goal is to find all integers n such that τ(n) = 77. Let n have
prime factorization n =

∏r
i=1 p

ai
i (i.e. n has r distinct prime factors p1 to pr

with ai ≥ 1. Using part 1 (and a little induction), we can expand τ(n) =∏r
i=1 τ(paii ) =

∏r
i=1(ai + 1) = 77. We factor 77 = 7 · 11.

• Case 1: n has one prime factor p. Then a+ 1 = 77, such that n is of the
form n = p76.

• Case 2: n has two distinct prime factors p and q. Then (ap +1) ·(aq +1) =
7 · 11. Since ap, aq ≥ 1, it is clear that (without loss of generality) ap = 6
and a1 = 10. So n is of the form n = p6q10.

• Case 3: n has 3 or more distinct prime factors. Consider the first 3
factors p, q, and k. Then (ap + 1) · (aq + 1) · (ak + 1) = 7 · 11, which is
a contradiction, since 7 · 11 has only two distinct factors greater than 1,
while (ap + 1) · (aq + 1) · (ak + 1) has three factors greater than 1 (since
each a ≥ 1). The case where n has more than 3 distinct prime factors
follows an identical contradiction.

We conclude that all integers with 77 distinct divisors are either of the form
n = p76, or of the form n = p6q10 – for prime p and q. 1 is also a valid integer
with this property.

III. Advanced Problems
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8. For this question, consider only positive integers. Let p and q be distinct primes, and
let a and b be integers. Define σ(n) to be the function which returns the sum of the
divisors of n (e.g. σ(12) = 1 + 2 + 3 + 4 + 6 + 12).

(a) What are σ(pa), σ(qb), and σ(paqb)? Argue that σ(paqb) = σ(pa) · σ(qb).

Solution: The factors of pa are the integers 1, p, p2, . . . , pa−1, pa. So σ(pa) =

1 + p+ . . .+ pa =
∑a

k=0 p
k = 1−pa+1

1−p
. Similarly σ(qb) = 1−qb+1

1−q
.

The factors of paqb are the integers pkql where 0 ≤ k ≤ a and 0 ≤ l ≤ b. So
σ(paqb) =

∑a
k=0

∑b
l=0 p

kql

Notice that σ(pa)·σ(qb) = (1+p+. . .+pa)·(1+q+. . .+qb) = 1·(1+q+. . .+qb)+p·
(1+q+. . .+qb)+. . .+pa(1+q+. . .+qb) =

∑b
l=0 1·ql+

∑b
l=0 p·ql+. . .+

∑b
l=0 p

a·ql =∑a
k=0

∑b
l=0 p

kql = σ(paqb).

(b) Argue that for a product of prime powers
∏r

i=1 p
ai
i (i.e. an r number of primes p1

to pr where each ai ≥ 1) that σ(
∏r

i=1 p
ai
i ) =

∏r
i=1 σ(paii )

Solution: We use proof by induction. We have shown r = 2 as a base case
(r = 1 is trivial). Now suppose that for r ≥ 2 that σ(

∏r
i=1 p

ai
i ) =

∏r
i=1 σ(paii ).

Now consider the product
∏r+1

i=1 p
ai
i (where we simply add another prime pr+1 to

the product). The factors of this number are of the form pb11 · pb22 · . . . · pbrr · p
br+1

r+1

(where for each i: 0 ≤ bi ≤ ai), such that:

σ(
r+1∏
i=1

paii ) =

ar+1∑
br+1=0

ar∑
br=0

. . .

a2∑
b2=0

a1∑
b1=0

pb11 · pb22 · . . . · pbrr · p
br+1

r+1

Notice that:

σ(
r∏

i=1

paii ) · σ(p
ar+1

r+1 ) = (
ar∑

br=0

. . .

a2∑
b2=0

a1∑
b1=0

pb11 · pb22 · . . . · pbrr ) · (1 + pr+1 + . . .+ p
ar+1

r+1 )

= (
ar∑

br=0

. . .

a2∑
b2=0

a1∑
b1=0

pb11 · pb22 · . . . · pbrr · 1) + (
ar∑

br=0

. . .

a2∑
b2=0

a1∑
b1=0

pb11 · pb22 · . . . · pbrr · pr+1)

+ . . .+ (
ar∑

br=0

. . .

a2∑
b2=0

a1∑
b1=0

pb11 · pb22 · . . . · pbrr · p
ar+1

r+1 )

=

ar+1∑
br+1=0

ar∑
br=0

. . .

a2∑
b2=0

a1∑
b1=0

pb11 · pb22 · . . . · pbrr · p
br+1

r+1 = σ(
r+1∏
i=1

paii )
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But by our inductive hypothesis σ(
∏r

i=1 p
ai
i ) =

∏r
i=1 σ(paii ), so we conclude that

σ(
∏r+1

i=1 p
ai
i ) =

∏r+1
i=1 σ(paii ).

(c) Classify all forms of integers whose sum of their divisors is odd (e.g. 2 is such an
integer: 1+2=3).

Solution: Let n be an integer with prime factorization n =
∏r

i=1 p
ai
i . Then

σ(n) =
∏r

i=1 σ(pa1i ). It is clear that σ(n) will be odd if and only if each σ(paii )
is odd. Consider some particular prime in this factorization pj.

• Case 1: pj=2: Then σ(p
aj
j ) = σ(2aj) = 1 + 2 + . . . + 2aj , where the sum

from 2 to 2aj will always be even, then the addition of 1 makes σ(2aj)
odd. So there is no restriction on the power of 2.

• Case 2: pj is an odd prime: Then σ(p
aj
j ) = 1 + pj + . . . + p

aj
j , where it is

simple to show that a sum of odd integers is odd if and only if there are
an odd number of terms in the sum, i.e. aj is even. So we must restrict
the powers of odd primes to be even.

We conclude that all integers with an odd sum of their divisors is of the form
n = 2a1 ·

∏
i>1 p

ai
i , where for each i > 1, ai is even (a1 may be any non-negative

integer).

9. Prove that there exists a Fibonacci number whose last 2018 digits are all 9s.

Solution: Let M = 102018. Consider extending the Fibonacci sequence backwards
so that F−2 = −1 ≡ −1 (mod M). Note that since there are finitely many pairs
of possible consecutive Fibonacci numbers (Fi, Fi+1), the Fibonacci numbers will
eventually repeat, as it is an infinite sequence, and two consecutive Fibonacci num-
bers uniquely determines the next. Hence there will be some j such that Fj ≡ −1
(mod M), for which j > 0 so Fj > 0.

Any positive number that is −1 (mod M) ends in 2018 9s.

10. Each of the positive integers a1, a2, . . . , an is less than 2018. The least common multiple
of any two of these is greater than 2018. Show that

1

a1
+

1

a2
+ · · ·+ 1

an
< 2.
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Solution: The number of integers from 1 to 2018 which are multiples of b is
⌊
2018
b

⌋
.

From the problem, we know that no integer less than 2018 is divisible by two or
more of the numbers a1, ..., an. Then, the number of integers less that 2018 that is
divisible by one of a1, ..., an is exactly⌊

2018

a1

⌋
+

⌊
2018

a2

⌋
+ · · ·+

⌊
2018

an

⌋
.

Since this is at most the number of integers less than 2018, we get

n∑
i=1

(
2018

ai
− 1

)
<

n∑
i=1

(
2018

ai

)
< 2018

2018
n∑

i=1

1

ai
< 2018 + 2018

n∑
i=1

1

ai
< 2.

11. Let a and b be positive integers such that ab + 1 divides a2 + b2. Show that a2+b2

ab+1
is a

perfect square.

Solution: IMO 1988 Q6.

“Nobody of the six members of the Australian problem committee could solve it. Two
of the members were husband and wife George and Esther Szekeres, both famous
problem solvers and problem creators. Since it was a number theoretic problem it
was sent to the four most renowned Australian number theorists. They were asked
to work on it for six hours. None of them could solve it in this time. The problem
committee submitted it to the jury of the XXIX IMO marked with a double asterisk,
which meant a superhard problem, possibly too hard to pose. After a long discussion,
the jury finally had the courage to choose it as the last problem of the competition.
Eleven students gave perfect solutions.”

–Arthur Engel

Click for solution
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12. Let n ≥ 2 be an integer. Show that m = 2n2 − 1 is the least natural number such that
there exist n positive integers a1, a2, . . . , an satisfying

1. a1 < a2 < . . . < an = m

2. All of
a21+a22

2
,
a22+a23

2
, . . . ,

a2n−1+a2n
2

are perfect squares.

Solution: Notice that for any positive integers b > a, if a2+b2

2
is a perfect square

then b must be somewhat greater than a. We shall make this precise.
Let b = a + d where d is even (if not a2+b2

2
would not be an integer) then b2+a2

2
=

a2+(a+d)2

2
= a2 + ad+ d2

2
.

Now a2 + ad + d2

2
> a2 + ad + d2

4
= (a + d

2
)2, so in order for a2 + ad + d2

2
to be a

perfect square it must be that a2 + ad+ d2

2
≥ (a+ d

2
+ 1)2. We would like to bound

the difference d by a, hence solving this equation gives d ≥
⌊
2
√

2a+ 2
⌋

+ 2
Going back to the problem, essentially we want to see how small an can be. A
natural way to do this is to choose a1 = 1, and try to bound a2, . . . an using the
bound above. Indeed, assume that ai ≥ 2i2−1 (this is true for a1) then by what was
proven above, ai+1 ≥

⌊
2
√

2ai + 2
⌋

+ ai + 2 = 2(i + 1)2 − 1. Hence, by induction we
have m = an ≥ 2n2− 1, which is exactly what we want to prove. For such a value of
m we can choose ai = 2i2 − 1 and the two conditions are satisfied.
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