
UBC Math Circle 2019 Problem Set 1

Theme: Induction

I. Introductory Problems

1. Prove that (
1− 1

4

)(
1− 1

9

)
· · ·
(

1− 1

n2

)
=

n + 1

2n
.

Solution: We use induction on n.

The base case is n = 2. Observe that
(
1− 1

4

)
= 3

2·2 , so the closed form holds for
n = 2.

Let n ≥ 2 be arbitrary, and suppose that the closed form holds for n. We want to
show that the closed form also holds for n + 1.(

1− 1

4

)
· · ·
(

1− 1

n2

)(
1− 1

(n + 1)2

)
=

(
n + 1

2n

)(
1− 1

(n + 1)2

)
=

(n + 1)2 − 1

2n(n + 1)
=

n + 2

2(n + 1)
.

This means that the closed form holds for n + 1 if it holds for n, so we are done by
induction.

2. Prove that for any n ≥ 0, if we remove any square from a 2n x 2n chessboard, the
remainder can be tiled with ”L” shaped pieces (more precisely, a 2x2 square with one of
the corners missing)

Solution: Base case: n=0. Then we have a 1x1 chessboard, and removing a square
leaves us with an empty grid, which can vacuously be tiled with L shaped pieces.

Suppose true up to n. Consider a 2n+1 x 2n+1 chessboard. Divide the chessboard into
4 quadrants, each of which is a smaller 2n x 2n chessboard. The removed square lies in
one of these quadrants. Place an L shaped piece in the centre of all 4 quadrants such
that it intersects the 3 quadrants without the square removed. Apply the induction
hypothesis to each quadrant.

II. Intermediate Problems

3. Consider n lines in a plane. These n lines divide the plane into some regions (there are
some infinite regions). We say two regions are adjacent if their borders share some line
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segment (they are not adjacent if their borders only share a point). Prove that it is
possible to colour each region either 1 or 2 so that no region coloured 1 is adjacent to a
region that is coloured 2 (yes, 1 and 2 are colours).

Solution: We use induction on n.

The base case is n = 0. The plane is divided into one region, and we can just colour
it any colour.

Suppose that the statement is true for some arbitrary n ≥ 0. We want to show that
the statement also holds for n + 1. Consider a valid colouring of the regions after
adding the first n lines. Now we add the last line. Note that if we flip the colours on
one side of the line, then we will get a valid colouring.

4. Prove that for all positive integers n,

1

2
· 3

4
· 5

6
· ... · 2n− 1

2n
<

√
1

3n

Solution: Use the inductive hypothesis that the product ≤
√

1
3n+1

, instead of the

obvious one.

5. There are 2n points around a circle, n of which are blue, and the other n are red. Going
counter-clockwise, we keep a count of how many red and blue points we have passed. If
at all times, the number of red points as at least the number of blue points, we say the
trip is good. Prove that no matter how we colour the 2n points, we can start somewhere
so that we have a good trip.

Solution: We use induction on n.

The base case is n = 0. Observe that n = 0 is trivial. There are no points, so we
can’t get more blue than red.

Let n ≥ 0 be arbitrary, we want to show that if the there exists a good trip for n,
then there also exists a good trip for n + 1. Consider the 2(n + 1) points around the
circle, of which n+1 are red and the other n+1 are blue. Since we have two different
colours, going counter-clockwise, we can find some place where we see a red point
with a blue point immediately following the red one. Suppose we remove these two
points from the 2(n + 1) points, then we have 2n points that satisfy the conditions,
so there exists a good trip for these 2n points.
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Now, I claim that if we take the good trip and add these two points, we still get a
good trip because the red one comes before the blue one in the trip (Exercise). This
means we also have a good trip for 2(n + 1) points.

Induction completes the proof.

6. Prove that for all n ∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

a2i

√√√√ n∑
i=1

b2i

Solution: Let n = 2:

LHS2 −RHS2 = (a1b1 + a2b2)
2 − (a21 + b21)(a

2
2 + b22)

= (a1b1)
2 + (a2b2)

2 + 2a1a2b1b2 − (a1a2)
2 − (b1b2)

2 − (a1b2)
2 − (a2b1)

2

= −[(a1b2)
2 − 2a1b2a2b1 + (a2b1)

2]

= −[(a1b2)− (a2b1)]
2

≤ 0

Assume that it holds for [2, n]. For n + 1, if we let

LHS = |
n+1∑
i=1

aibi|

≤ |
n∑

i=1

aibi|+ |an+1bn+1|

≤

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

b2i + |an+1bn+1|

≤ (

√√√√ n∑
i=1

a2i

2

+ |an+1|2)
1
2 (

√√√√ n∑
i=1

b2i

2

+ |bn+1|2)
1
2

=

√√√√n+1∑
i=1

a2i

√√√√n+1∑
i=1

b2i

III. Advanced Problems
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7. A sphere is covered with n ≥ 4 hemispheres. Prove that we can choose 4 of these
hemispheres such that the sphere is still covered after removing all other hemispheres.

Solution: Let {xi} be the set of ”peak” points of the hemispheres. Consider the
convex hull of these points, which is a convex polyhedron. Then I claim that the
hemispheres cover the sphere if and only iff the polyhedron contains the centre of
the the sphere.

The given hemispheres don’t cover the sphere iff there is a point, y, that is not
covered iff there are no xi within a hemisphere of y iff all the xi are contained in
some open hemisphere iff the convex polyhedron don’t contain the centre.

Now take a tetrahedral decomposition of the given convex polyehdron to find a
tetrahedron containing the centre, and hence 4 hemispheres covering the sphere.

8. (APMO 1999) Let {ai} be a sequence of real numbers that satisfy ai+j ≤ ai + aj for all
i, j ≥ 1 (not necessarily distinct). Prove that

a1
1

+
a2
2

+ · · ·+ a2019
2019

≥ a2019.

Solution: Proceeding by strong induction, we will show for all n ≥ 1 (including
n = 2019) that

n∑
i=1

ai
i
≥ an

The base case n = 1 holds trivially.

Inductive step: assuming the statement holds for all 1 ≤ n ≤ k, we will prove it for
n = k + 1.

By the strong inductive hypothesis,

k∑
j=1

(

j∑
i=1

ai
i

) ≥
k∑

j=1

aj

k∑
j=1

(k + 1− j)
aj
j
≥

k∑
j=1

aj

(k + 1)
k∑

j=1

aj
j
≥ 2

k∑
j=1

aj =
k∑

j=1

(aj + ak+1−j) ≥ kak+1

Rearranging, we obtain the desired inequality:

k+1∑
j=1

aj
j
≥ ak+1
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9. Prove that given a, x1, ...xn ≥ 0

n∏
i=1

(a + xi) ≥

(
a +

n∏
i=1

x
1/n
i

)n

Solution: For n = 1 we have equality. We shall proceed by Cauchy induction.

Suppose true for n = k. Define mj =
∏j

i=1 x
1/j
i . We want to show it holds for n = 2k,

as well as n = k − 1.

First, let n = 2k and split up the xi into two groups: 1 ≤ i ≤ k and k + 1 ≤ i ≤ 2k.
For each group, applying the induction hypothesis nets us the following:

k∏
i=1

(a + xi) ≥ (a + mk)k (1)

2k∏
i=k+1

(a + xi) ≥

(
a +

2k∏
i=k+1

x
1/k
i

)k

(2)

For (2), we have(
a +

2k∏
i=k+1

x
1/k
i

)k

=

(
a +

mk

mk

2k∏
i=k+1

x
1/k
i

)k

=

(
a +

m2
2k

mk

)k

(3)

Now combining (1) and (3) we have

2k∏
i=1

(a + xi) ≥ (a + mk)k
(
a +

m2
2k

mk

)k

=

(
a2 + m2

2k + a

(
mk +

m2
2k

mk

))k

=

(
a2 + m2

2k + a

((
√
mk −

m2k√
mk

)2

+ 2m2k

))k

≥
(
a2 + m2

2k + 2am2k

)k
= (a + m2k)2k

Now we want to show that it also holds for n = k − 1. In particular, it should hold
when xk = mk−1. In that case, we have

k∏
i=1

(a + xi) = (a + mk−1)
k−1∏
i=1

(a + xi) ≥

(
a +

k∏
i=1

x
1/k
i

)k

= (a + mk−1)
k

Divide by (a + mk−1) and we have our result.
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