
UBC Math Circle 2019 Problem Set 2

Problems will be ordered roughly in increasing difficulty

1. Find the least positive integer n such that n! ends in exactly 2019 zeroes.

Solution: Observe that the number of trailing zeroes in n! is just the number of
times a factor of 5 appears in the numbers 1, 2, ..., n (with multiplicity). We can
write this number as

∞∑
k=1

⌊ n
5k

⌋
.

This immediately gives n < 10000.

I used the good old guess-and-check method.

1. Plug in n = 8000. This is gives 1998, which is almost 2019.

2. Since 1998 is really close to 2019, just enumerate multiples of 5 starting from
8005 until we hit 2019 factors of 5.

3. The answer is 8090.

2. Classify all numbers with exactly 2019 distinct divisors in terms of the number’s prime
factorization.

Solution: 2019 = 3 × 673, and 673 is prime. By the number of divisors formula if
n =

∏r
i=1 p

ai
i , then the number of divisors of n is

∏r
i=1(ai + 1). Hence it must be of

the form p2018, or p2q672 for primes p and q.

3. (Putnam 1991) For positive integers n define d(n) = n − m2, where m is the greatest
integer with m2 ≤ n. Given a positive integer b0, define a sequence bi by taking bk+1 =
bk + d(bk). For what b0 do we have bi constant for sufficiently large i?

Solution: bi is eventually constant iff b0 is a perfect square. If bk is a perfect square,
then d(bk) = 0, and bk+1 = bk.

If bk is not a perfect square, then bk = m2 + r for 1 ≤ r ≤ 2m. Then d(bk) = r, and
bk+1 = m2 + 2r. We have m2 < bk+1 < (m+ 2)2 but bk+1 6= (m+ 1)2 as 2r 6= 2m+ 1.
Also, bk+1 > bk, is not a perfect square, so the sequence is always increasing.
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4. For any n, there exist n consecutive positive integers such that none of them are square-
free

Solution: Consider the congruences x ≡ 0 (mod 22), x + 1 ≡ 0 (mod 32), . . . , x +
n ≡ 0 (mod p2n) Such a system has a solution by the Chinese Remainder’s Theorem.

5. (Putnam 1975) A triangular number is a positive integer of the form n(n+1)
2

. Show that
m is a sum of two triangular numbers iff 4m+ 1 is a sum of two squares.

Solution: If m = a(a+1)
2

+ (b(b+1)
2

, then 4m+ 1 = (a− b)2 + (a+ b+ 1)2.

Conversely, if 4m + 1 = a2 + b2, then a2 + b2 ≡ 1(mod 4). Thus, WLOG, a is even

and b is odd. Then (a + b − 1) and (a − b − 1) are both even. Let c = (a+b−1)
2

and

d = (a−b−1)
2

. Then c(c+1)
2

+ d(d+1)
2

= m.

6. Show that there are infinitely many primes of the form 3n+ 1, without using Dirichlet’s
prime theorem.

Solution: We consider the polynomial P (x) = x2 +x+1. We claim that if p | P (x),
then p ≡ 1 mod 3. We know that x3− 1 = (x− 1)(x2 + x+ 1). So, if p | P (x), then
p | x3− 1. It follows that the order of x modulo p is divisible by 3. But if p is prime,
then the order of x must divide φ(x) = p− 1. So, 3 | p− 1 ⇐⇒ p ≡ 1 mod 3.

Now suppose there are finitely many primes of the form 3n + 1. Let these be
p1, p2, . . . , pk. Take Q :=

∏k
j=1 pj. Clearly P (Q) > 1. So, it must be divisible

by some prime, p. We showed above that p must be of the form 3n + 1. But, p
cannot be one of pj, as then p | Q2 + Q, giving p | 1. The former is impossible, so
we must have a new prime of the form 3n+ 1. This contradicts our assumption that
there are only k primes of the form 3n + 1. Thus, there are infinitely many such
primes.

7. Show that there are infinitely many pairs of positive integers (m,n) such that

m+ 1

n
+
n+ 1

m
∈ N

.
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Solution: Some Vieta jumping. https://math.stackexchange.com/questions/2940631/show-
that-infinitely-many-positive-integer-pairs-m-n-exist-s-t-fracm1n

8. Let n ≥ 2 be an integer. Show that m = 2n2 − 1 is the least natural number such that
there exist n positive integers a1, a2, . . . , an satisfying

1. a1 < a2 < . . . < an = m

2. All of
a21+a22

2
,
a22+a23

2
, . . . ,

a2n−1+a2n
2

are perfect squares.

Solution: Notice that for any positive integers b > a, if a2+b2

2
is a perfect square

then b must be somewhat greater than a. We shall make this precise.
Let b = a + d where d is even (if not a2+b2

2
would not be an integer) then b2+a2

2
=

a2+(a+d)2

2
= a2 + ad+ d2

2
.

Now a2 + ad + d2

2
> a2 + ad + d2

4
= (a + d

2
)2, so in order for a2 + ad + d2

2
to be a

perfect square it must be that a2 + ad+ d2

2
≥ (a+ d

2
+ 1)2. We would like to bound

the difference d by a, hence solving this equation gives d ≥
⌊
2
√

2a+ 2
⌋

+ 2
Going back to the problem, essentially we want to see how small an can be. A natural
way to do this is to choose a1 = 1, and try to lower bound a2, . . . an using the given
bound. Indeed, assume that ai ≥ 2i2−1 (this is true for a1) then by what was proven
above, ai+1 ≥

⌊
2
√

2ai + 2
⌋

+ ai + 2 = 2(i + 1)2 − 1. Hence, by induction we have
m = an ≥ 2n2 − 1, which is exactly what we want to prove. For such a value of m
we can choose ai = 2i2 − 1 and the two conditions are satisfied.
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