
UBC Math Circle 2019 Problem Set 4

Problems will be ordered roughly in increasing difficulty

1. The numbers 1, 2, ...2k are given. You may remove two numbers, x, y, and replace them
with x + xy + y. After 2k − 1 iterations, there is one element left. What are the
possibilities for this element?

Solution: First, a simple example. Given x, y, z, we have, after 1 step, xy+x+y, z,
and after the second step, xyz + xz + yz + xy + x + y + z. Thus, by induction, we
see that we are summing all possible products of subsets of the given numbers. This
is (2k + 1)!− 1. Note that having an even number was a red herring.

2. The integers 1, 2, ...n are written down in that order. At each step, you may swap any
two numbers. Prove that you can never return to the starting arrangement after an odd
number of steps.

Solution: Let P = x1, x2, ...xn be any permutation of the integers 1, 2, ...n. Let
uP (k) be the number of xi > xk, for 1 ≤ i < k. Let U(P ) =

∑n
k=1 uP (k). We

have that U(P ) measures how unordered the permuation is. We note that for the
permutation I = 1, 2, ...n, that U(I) = 0. Now consider what happens if P and
P ′ differ by exactly 1 swap. Let xk and xm be the swapped pair in question, so
we have P = x1, ...xk, ...xm, ...xn and P ′ = x1, ...xm, ...xk, ...xn. We want to con-
sider U(P ) − U(P ′). Note that uP (i) = uP ′(i) for i < k and i > m. Now consider
uP (i)− uP ′(i) for k < i < m. We have a few cases:

Case 1: xk < xi > xm or xk > xi < xm. Then uP (i)− uP ′(i) = 0.
Case 2: xk < xi < xm. Then uP (i)− uP ′(i) = −1− 1 = −2.
Case 3: xk > xi > xm. Then uP (i)− uP ′(i) = 1− (−1) = 2.

Finally, we have to consider uP (k) − uP ′(k) and uP (m) − uP ′(m), (Being careful
because in P ′, the k-th position is actually occupied by xm and vice versa). We now
have 2 cases:

Case 1: xk < xm. Then uP (k)− uP ′(k) + uP (m)− uP ′(m) = −1.
Case 2: xk > xm. Then uP (k)− uP ′(k) + uP (m)− uP ′(m) = 1.

Thus, in the end, U(P )− U(P ′) is an odd number (−3,−1, 1, 3), and we can’t have
an odd sum of odd number be zero, so we can’t get back to the original permutation
after an odd number of swaps.
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3. Start with a sequence a1, a2, ..., an of positive integers. If possible, choose two indices
j < k such that aj does not divide ak, and replace aj and ak by gcd(aj, ak) and lcm(aj, ak),
respectively. Prove that if this process is repeated, it must eventually stop, and the final
sequence is determined entirely by the initial sequence, ie it is independent of the choices
made.

Solution: We first prove that the process stops. Note first that the product a1 · · ·an
remains constant, because ajak = gcd(aj, ak)lcm(aj, ak). Moreover, the last number
in the sequence can never decrease, because it is always replaced by its least common
multiple with another number. Since it is bounded above (by the product of all of the
numbers), the last number must eventually reach its maximum value, after which it
remains constant throughout. After this happens, the next-to-last number will never
decrease, so it eventually becomes constant, and so on. After finitely many steps, all
of the numbers will achieve their final values, so no more steps will be possible. This
only happens when aj divides ak for all pairs j < k.

We next check that there is only one possible final sequence. For p a prime and m a
nonnegative integer, we claim that the number of integers in the list divisible by pm

never changes. To see this, suppose we replace aj, ak by gcd(aj, ak) and lcm(aj, ak).
If neither of aj, ak is divisible by pm, then neither of gcd(aj, ak) and lcm(aj, ak) is
either. If exactly one aj, ak is divisible by pm, then lcm(aj, ak) is divisible by pm

but gcd(aj, ak) is not. If both of aj, ak are divisible by pm, then gcd(aj, ak) and
lcm(aj, ak) are as well.

If we started out with exactly h numbers not divisible by pm, then in the final
sequence a′1, ...a

′
n, the numbers a′h+1, ...a

′
n are divisible by pm while the numbers

a′1, ...a
′
h are not. Repeating this argument for each pair (p,m) such that pm divides

the initial product a1, · · ·, an, we can determine the exact prime factorization of each
of a′1, ...a

′
n. This proves that the final sequence is unique.

4. Suppose we have an infinite grid, with n points on the grid coloured blue. Iteratively
colour points on the grid if they have two adjacent points coloured in (adjacent as in
horizonally or vertically, diagonals do not count). Prove that this process terminates,
and give an upper bound on the final number of coloured points. Determine which
starting arrangements can achieve this bound.

Solution: This problem is harder than initially thought. We don’t know of a solu-
tion.

5. Show that every convex polyhedron has at least two faces with the same number of sides.
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Solution: Choose the largest face, and suppose that it has n sides. Then, the
number of sides that each of its n neighbours has is in the set S = 3, ..., n sides.
However, n > |S|, so pigeonhole gives the desired result.

6. Let P be a convex polygon. Show that there exists consecutive vertices A, B, and C
such that the circumcircle of 4ABC covers P .

Solution: Among the finitely many circles through three vertices of the n-gon, there
is a maximal circle.

Now we split the problem into 2 parts:

(a) the maximal circle covers the n-gon.

(b) the maximal circle passes through three consecutive vertices.

We prove (a) indirectly. Suppose the point A’ lies outside the maximal circle about
triangle ABC where A, B, C are denoted such that A, B, C, A’ are vertices of a
convex quadrilateral. Then the circumcircle of triangle A’BC has a larger radius
then that of triangle ABC. Contradiction.

We also prove (b) indirectly. Let A, B, C be vertices on the maximal circle, and
let A’ lie between B and C and not on the maximal circle. Because of (a), it lies
inside that circle, but then the circle about triangle A’BC is larger than the maximal
circumcircle. Contradiction.

7. Show that any convex polygon of area 1 is contained in a rectangle of area 2.

Solution: Let P be a convex polygon with area 1 and let AB be a diameter of P .
Let l and m be the lines perpendicular to AB through A and B respectively. Let
n and o be lines perpendicular to l and m such that just meet P (For example, to
construct n, draw a line perpendicular to l and m away from K on the right. Move
this line towards P until it first touches P ). Observe that n and o must each intersect
at least one vertex of P each. Call these vertices C and D, respectively. We have
that the four lines l, m, n, o form a rectangle that bounds P , which we shall call R.
The diameter AB splits R into two smaller rectangles, which we can call S and T ,
containing C and D, respectively. Consider the triangle ABC, which lies entirely in
S, and likewise, ABD lies entirely in D. It is now clear that the area of ABC is half
the area of S, and similarly for ABD. The quadrilateral ACBD, has area equal to
the sum of the areas of ABD and ABC, which by the above, is half the area of R.
However, ACBD is contained entirely in P because P is convex, so ACBD has area
at most 1. Hence, R has area at most 2.
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