
UBC Math Circle 2019 Problem Set 5

Problems will be ordered roughly in increasing difficulty

1. For i = 1, 2, let Ti be a triangle with side lengths ai, bi, ci, and area Ai. Suppose that
a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle. Does it follow that A1 ≤ A2?

Solution: Yes. Label the angles as P1, Q1, R1 for the angles of T1, and P2, Q2, R2 for
the corresponding angles in T2. As the angles of T1 and T2 sum to π, we must have
some angle in T1 that is no more than its corresponding angle in T2. WLOG, let this
be P1 ≤ P2 <

π
2
, as T2 is an acute triangle. Then sin(P1) ≤ sin(P2), and we have

that A1 = 1
2
x1y1 sin(P1) ≤ 1

2
x2y2 sin(P2) = A2, where xi, yi are the sides adjacent to

Pi.

2. Let T be an equilateral triangle, and let P be any point inside T . Let a = AP , b = BP ,
and c = CP . Show that there exists a triangle with side lengths a, b, and c.

Solution: Rotate the equilateral triangle 60◦ about one of the vertices. We have
the following picture:
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3. Suppose that S is a finite set of points in the plane such that the area of triangle ABC
is at most 1 whenever A, B, and C are in S. Show that there exists a triangle of area 4
that (together with its interior) covers the set S.

Solution: Since S is finite, we can choose three points A,B,C in S so as to maximize
the area of the triangle ABC. Let A′, B′, C ′ be the points in the plane such that
A,B,C are the midpoints of the segments B′C ′, C ′A′, A′B′; the triangle A′B′C ′ is
similar to ABC with sides twice as long, so its area is 4 times that of ABC and
hence no greater than 4.
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We claim that this triangle has the desired effect; that is, every point P of S is
contained within the triangle A′B′C ′. (To be precise, the problem statement requires
a triangle of area exactly 4, which need not be the case for A′B′C ′, but this is trivially
resolved by scaling up by a homothety.) To see this, note that since the area of the
triangle PBC is no more than that of ABC, P must lie in the half-plane bounded
by B′C ′ containing B and C. Similarly, P must lie in the half-plane bounded by
C ′A′ containing C and A, and the half-plane bounded by A′B′ containing A and
B. These three half-planes intersect precisely in the region bounded by the triangle
A′B′C ′, proving the claim.

4. Given two circles C and C ′ such that the radius of C is less than the radius of C ′, and
furthermore, C is inside C ′. We call C and C ′ the bounding circles. A “Steiner chain”
is a chain of circles inscribed between C and C ′ such that all the circles in the chain are
tangent to both C and C ′, and furthermore, consecutive circles in the chain are tangent.
This is best illustrated via a picture.

steinerchain.png

Let C and C ′ be given bounding circles. Suppose that there exists some Steiner chain.
Prove that there are infinitely many Steiner chains, and furthermore, the tangent points
between circles in the chain (so not the tangent points with C and C ′) all lie on some
third circle.

Solution: Use circle inversion on the whole thing, so that C and C ′ become concen-
tric. Then we can rotate the Steiner chain about the common centre, and uninvert,
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so we get infinitely many Steiner chains. Furthermore, in the inverted picture, the
points of tangency lie on some circle C ′′ which lies between C and C ′. When we
uninvert C ′′, we get that the tangent points of the original Steiner chain lie on a
circle.

5. Given an acute angled triangle ABC, let the midpoints of the sides BC, CA and AB
be D, E and F , respectively. Let the foot of the altitude of the triangle starting from
C be T1. Let l be some line passing through point C, but not containing T1, and let T2
and T3 be the feet of the pependiculars from l to A and B, respectively. Prove that the
circle DEF passes through the center of the circle T1T2T3.

Solution:

PS5picture.png

Let J be the centre of the cirlcle T1T2T3, and let G,H, I ≡ T1 the feet of the altitudes
of ABC. Since the circumcircle of the median triangle DEF is the nine-point-circle
of ABC, D,E, F,G,H, I are concyclic. Since BT3C = CIB = π

2
, BCT3T1 is a

cyclic quadrilateral and the perpendicular bisector of T1T3 goes through D. Let
T4 be the midpoint of T2T3. By Thales’ theorem, the perpendicular bisector of
T2T3 goes through F . Now the angle between the FT4 and the JD lines equals
the angle between the CT3 and T1T3 lines, by switching to perpendiculars. By
exploiting the ciclicity of BCT3T1 we have that this angle equals CBA = FED.
If J is the intersection between FT4 and the perpendicular bisector of T1T3, J is
the circumcenter of T1T2T3 and FJD = FED. It follows that J belongs to the
nine-point-circle of ABC, as wanted.

6. Give a tiling of R3 by circles of finite, positive radius. Here by tiling we mean give a set
of circles such that for each point in R3, it lies on exactly one of the circles.

Solution: Consider circles of the form (x − 4k − 1)2 + y2 = 1, z = 0. These are
circles of radius 1 lying in the x− y plane. Now for every r > 0, consider the sphere
S = x2 +y2 +z2 = r2. We have that S intersects the previous set of circles at exactly
2 distinct points. Thus if we show that every sphere with 2 points removed can be
covered with circles, then we are done.
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Case 1: the two removed points are antipodal. WLOG assume that they are the
north pole and the south pole. Then the rest of the sphere can be covered with
circles of latitude.

Case 2: the two removed points are not antipodal, so the tangent planes to the sphere
at the two points are not parallel. Thus they intersect in a line, L. For every point
on the sphere, construct a plane passing through the point and L. The intersection
of this plane with the sphere is a circle, and every point on this circle generates the
same plane, so each point on the sphere lies on exactly one such circle. This fails at
the two removed points, as there we have degenerate circles of radius 0, but we’re
removing them anyways.

Thus every sphere with any two distinct points removed can be covered with circles.

7. Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to Γ, and
let ta, tb and tc be the lines obtained by reflecting t across the lines BC, CA and AB,
respectively. Show that the circumcircle of the triangle determined by the lines ta, tb,
and tc is tangent to the circle ω.

Solution: To avoid a large case distinction, we will use the notion of oriented angles.
Namely, for two lines ` and m, we denote by ∠(`,m) the angle by which one may
rotate ` anticlockwise to obtain a line parallel to m. Thus, all oriented angles are
considered modulo 180◦.
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Denote by T the point of tangency of t and ω. Let A′ = tb ∩ tc, B′ = ta ∩ tc, and
C ′ = ta ∩ tb. Introduce the point A′′ on ω such that TA = AA′′ (A′′ 6= T unless TA
is a diameter. Define the points B′′ and C ′′ in a similar way.

Since the points C and B are the midpoints of arcs TC ′′ and TB′′ , respectively, we
have

∠(t, B′′C ′′) = ∠(T, TC ′′) + ∠(TC ′′B′′C ′′) = 2∠(t, TC) + 2∠(TC ′′, BC ′′)

= 2(∠(t, TC) + ∠(TC,BC)) = 2∠(t, BC) = ∠(t, ta)

It follows that ta and B′′C ′′ are parallel. Similarly, tb||A′′C ′′ and tc||A′′B′′. Thus,
either the triangles A′B′C ′ and A′′B′′C ′′ are homothetic, or they are translates of
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each other. Now we will prove that they are in fact homothetic, and that the center
K of the homothety belongs to ω. It would then follow that their circumcircles are
also homothetic with respect to K and are therefore tangent at this point, as desired.
We need the two following claims.

Claim 1. The point of intersection X of the lines B′′C and BC ′′ lies on ta.
Proof. Actually, the points X and T are symmetric about the line BC, since the
lines CT and CB′′ are symmetric about this line, as are the lines BT and BC ′′.

Claim 2. The point of intersection I of the lines BB′ and CC ′ lies on the circle ω.
Proof. We consider the case that t is not parallel to the sides of ABC; the other
cases may be regarded as limit cases. Let D = t∩BC, E = t∩AC, and F = t∩AB.
Due to symmetry, the line DB is one of the angle bisectors of the lines BD and FD;
analogously, the line FB is one of the angle bisectors of the lines B′F and DF . So
B is either the incenter or one of the excenters of the triangle B′DF . In any case we
have ∠(BD,DF ) + ∠(DF,FB) + ∠(B′B,B′D) = 90◦, so

∠(B′B,BC) = ∠(B′B,B′D) = 90◦−∠(BC,DF )−∠(DF,BA) = 90◦−∠(BC,AB)

Analogously, we get ∠(C ′C,B′C ′) = 90◦ = ∠(BC,AC). Hence,

∠(BI,CI) = ∠(B′B,B′C ′)+∠(B′C ′, C ′C) = ∠(BC,AC)−∠(BC,AB) = ∠(AB,AC)

which means exactly that the points A, B, I, C are concyclic.

Now we can complete the proof. Let K be the second intersection point of B′B′′ and
ω. Applying Pascal’s theorem to the hexagon KB′′CIBC ′′ we get that the points
B′ = KB′′ ∩ IB and X = B′′C ∩ BC ′′ are collinear with the inersection point S of
CI and C ′′K. So S = CI ∩B′X = C ′, and the points C ′, C ′′, K are collinear. Thus
K is the intersection point of B′B′′ and C ′C ′′, which implies that K is the center of
the homothety mapping A′B′C ′ to A′′B′′C ′′, and it belongs to ω.
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