
UBC Math Circle 2019 Problem Set 7

Problems will be ordered roughly in increasing difficulty

1. Consider all 2019-element subsets of the set {1, 2, ..., 10000}. From each subset choose
the least element. Find the arithmetic mean of all these least elements.

Solution: Each 2019 element subset {a1, a2, ..., a2019} of {1, 2, ..., 10000} with a1 <
a2 < ... < a2019 contributes a1. Now consider the set {a1 + 1, a2 + 1, ..., a2019 + 1}.
There are a1 ways to choose a positive integer k such that k < a1+1 < ... < a2019+1.
Thus, the number of ways to choose the set {k, a1 + 1, a2 + 1, ..., a2019 + 1} must be
equal to the least element sum. But, this is the number of ways to choose a 2020
element subset from {1, 2, ..., 10001}.
So, the average is given by: (

10001
2020

)(
10000
2019

) =
10001

2020

Source: 2015 AIME I Problem 12 by Art of Problem Solving

2. There are 2019 students at an university. Students join together to form several clubs (a
student may belong to many different clubs). Some clubs join together to form societies
(a club may belong to many different societies. There are a total of k societies. Suppose
that the following conditions hold:

1. Each pair of students are in exactly one club together.

2. For each student and each society, the student is in exactly one club of the society.

3. Each club has an odd number of students. In addition, a club with 2m+1 students
is in exacty m societies.

Find all possible values of k.

Solution: Replacing the number 2019 with the variable n, we will count the number
of ordered triples (a, C, S), where a is a student belonging to a club C, which belongs
to a society S. We will denote such triples acceptable.

Now, for any student a and any society S, there is exactly one club which will form
an acceptable triple. Thus the number of triples is nk.

Consider any club C with |C|members. It is in |C|−1
2

societies, so C can form |C|(|C|−1)
2

acceptable triples. If C denotes the set of all clubs, then this implies that

nk =
∑

C∈C
|C|(|C|−1)

2
=
∑

C∈C
(|C|

2

)
.
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But since any pair of students belong to exactly one club, it follows that
(
n
2

)
=∑

C∈C
(|C|

2

)
, or n(n−1)

2
= nk. Therefore k = n−1

2
. Thus, if there are 2019 students,

there have to be exactly 1009 societies

Source: 2004 IMO Shortlist Problems/C1 by Art of Problem Solving

3. At the vertices of a regular hexagon are written six non-negative integers whose sum is
2019. Bert is allowed to make moves of the following form: he may pick a vertex and
replace the number written there by the absolute value of the difference between the
numbers written at the two neighboring vertices. Prove that Bert can make a sequence
of moves, after which the number 0 appears at all six vertices.

Solution: Assume the original numbers are a, b, c, d, e, f . Since a+ b+ c+ d+ e+ f
is odd, either a + c + e or b + d + f must be odd. WLOG let a + c + e be odd and
a ≥ c ≥ e ≥ 0.

Case 1 a, c, e > 0. Define Operation A as the sequence of moves from Step 1 to Step
3, shown below:

Notice that Operation A changes the numbers a, c, e to c − e, c, a − c and they are
all nonnegative, since a ≥ c ≥ e. Their sum changes from a + c + e to a + c − e;
it decreases as long as e 6= 0. If we repeat Operation A enough times, its sum will
decrease and eventually we will arrive at a point where at least one of the numbers
in the positions originally occupied by a, c, e has become a 0.

Case 2 a, c > 0 and e = 0. Define Operation B as the sequence of moves from Step
1 to Step 3, shown below:

where in Step 3, we take the nonnegative choice of 2c−a or a− 2c. a, c, 0 is changed
to either c, 2c− a, 0 or c, a− 2c, 0. If we have c, 2c− a, 0, their sum is 3c− a and this
is less than a+ c+0 (the original sum) unless a = c, but a 6= c since the original sum
a + c + 0 is odd by assumption. If we have c, a − 2c, 0, their sum is a − c, which is
less than a+ c. Operation B applied repeatedly will cause either a or c to become 0.

Case 3 a > 0 and c = e = 0. Define Operation C as the sequence of moves from Step
1 to Step 4, shown below:

Source: 2003 USAMO Problems/Problem 6 by Art of Problem Solving

4. How many paths on the surface of an n × n × n cube travel from (0, 0, 0) to (n, n, n)
while taking only unit steps in the positive x, y, or z direction?
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Solution: Each path traverses two faces, and there are 6 possible pairs of faces
to traverse. Each of these two face paths is a 2n × n rectangle, so we get a total
of 6

(
2n+n

n

)
paths. However, we have overcounted paths which fully traverse edges.

Consider paths which fully traverse at least one edge. There are 6 possible edges
for these paths to include, and there are

(
n+n
n

)
ways to traverse the remaining face.

Thus, we now have 6
(
3n
n

)
− 6
(
2n
n

)
paths so far. There is no way for a path to traverse

exactly two edges, so we just need to see how many paths that traverse three edges
we over counted by. Such paths are counted three times each in the original count,
but also twice each when considering paths that traverse at least one edge, so the
final count is correct. Thus we have 6

[(
3n
n

)
−
(
2n
n

)]
5. Let T be the set of ordered triples (x, y, z), where x, y, z are integers with 0 ≤ x, y, z ≤ 9.

Players A and B play the following game. Player A chooses a triple (x, y, z) in T , and
Player B has to discover A’s triple in as few moves as possible. A move consists of
the following: B gives A a triple (a, b, c) in T , and A replies by giving B the number
|x + y − a − b| + |y + z − b − c| + |z + x − c − a|. find the minimum number of moves
that B needs to be sure of determining A’s triple (IMO shortlist 2002)

Solution: In mod 2, we see that

|x + y − a− b|+ |y + z − b− c|+ |z + x− c− a| ≡ 2(x + y + z − a− b− c),

so the outcome of B’s move must always be even. Furthermore, the outcome must
be no greater than 54 and no less than 0, so there are at most 28 different possible
outcomes per move. Since there are 103 possible triples (x, y, z) and at most 282 < 103

possible outcomes after two moves, at least three moves are required.

We will now show how to determine (x, y, z) in three moves. A first move of (0, 0, 0)
will give us 2(x + y + z). We shall denote x + y + z as s.

If s ≤ 9, then the moves (9, 0, 0) and (0, 9, 0) will give us 18 − 2x and 18 − 2y,
respectively, enabling us to determine (x, y, z). Similarly, if s ≥ 18, the moves
(0, 9, 9) and (9, 0, 9) will give us 2x and 2y.

If 9 < s < 18, then our second move is (9, s − 9, 0). Let us call the result 2k. We
have two cases. In Case I, y > s − 9, which gives us x = 9 − k, z < k. In Case II,
y ≤ s − 9, so x ≥ 9 − k and z = k. In either case, we have z ≤ k ≤ y + z (the
right-hand side comes from y + z = s− 9 + k or z = k, y ≥ 0) and x + z ≤ 9 + k.

Now, if s− k ≤ 9, then our third move is (s− k, 0, k). This gives us

|x + y − s + k|+ |y + z − k|+ |z + x− s| = k − z + y + z − k + y = 2y,

which gives us y and tells us whether Case I or Case II holds, letting us determine
(x, y, z).

On the other hand, if s− k > 9, our third move is (9, s− k − 9, k). This gives us
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|x+ y− s+ k|+ |y + z− s+ 9|+ |z +x− k− 9| = |k− z|+ |9−x|+ |k + 9− z−x| =
2(k + 9− s + y),

which again gives us y, telling us which of Cases I and II hold, letting us determine
the triple (x, y, z)

6. A partition of a positive integer n is a way of writing n as a sum of positive integers.
Two sums that differ only in the order of their summands are said to be the same
partition. Show that the number of ways to partition n with only odd summands (e.g.
4 = 1+1+1+1 = 1+3) is equal to the number of ways to partition n with only distinct
summands (e.g. 4 = 1 + 3 = 4).

Solution: We admit the following result: There is a function known as a generating
function, fk(x) = 1 + xk + x2k + ..., which gives the number of ways of partitioning
n into summands, all of which are exactly k, in the sense that the number of such
partitions is the coefficient of the xn term. Similarly, to get the the number of ways
of partitioning n into summands, all of which are at most k, has generating function
f1(x)f2(x)...fk(x), and the number of partitions is once again the coefficient of the
xn term. Thus, to show the number of partitions with odd summands is equal to
the number of partitions with distinct summands, it sufficies to show the generating
functions are the same.

We ignore issues of convergence (for example we assume |x| < 1 to use the geometric
series identities). The generating function for the number of partitions with only odd
summands is

g(x) = f1(x)f3(x)f5(x) · · · = 1

1− x

1

1− x3

1

1− x5
· · · =

∞∏
i=1

1

1− x2i−1

The generating function for partitions into distinct parts is

h(x) = (1 + x)(1 + x2)(1 + x3) · · · = 1− x2

1− x

1− x4

1− x2

1− x6

1− x3
· · ·

=

∏∞
i=1(1− x2i)

(
∏∞

i=1 1− x2i−1) (
∏∞

i=1 1− x2i)
=
∞∏
i=1

1

1− x2i−1

7. Find all naturals k such that given k distinct, pairwise non-parallel lines on the plane,
we can write a number in {1, 2, . . . k − 1} on each intersection so that every line has all
numbers from 1 to k − 1.
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Solution: Graph theoretic solution:
Consider each line to be a vertex and each intersection of pairs of lines to be an
edge. This forms a complete graph. Labels on intersections are now labels on edges.
Clearly no two edges labeled with the same number can be incident to the same
vertex.

This problem is equivalent to decomposing the complete graph on k vertices into
k − 1 prefect matchings, where we’ll label the edges of each matching with a unique
number. A result in graph theory shows that this is possible whenever k is even.
Clearly this is impossible when k is odd.
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