UBC Math Circle 2019 Problem Set 9
Problems will be ordered roughly in increasing difficulty

1. The equation x* + Az® + B2? + Cx + D = 0 has solutions z = 3 £ \/§, 1 ++/5. Find
A+ B+C+D.

Solution: Let P(z) = 2*+ Az®+ Bx*+Cz+D. We have P(1) = 1+ A+ B+C+D.
Since P is monic, we also know P(r) = (v—3—v/2)(z—3++v/2)(x—1—+/5)(z—1++/5)
sopluginltoget A+ B+C+D+1=-10=A+B+C+D=|-11]

2. Find all rational polynomials p(z) = 23 + ax? + bx + ¢ such that a, b, ¢ are roots of p.

Solution: By Vietas formula

a+b+c = —q
ab+bc+ac =0b
abe = —¢

From the third equation (ab + 1)c = 0. Thus ab = —1 or ¢ = 0. If ¢ = 0, then
a+b= —a and ab = b. Hence (a,b,c) = (0,0,0) or (1,—2,0).

If ab = —1, then ¢ = —2a — b and

—14+b(—2a—b)+(—2a—bja=b
20> =2+ b+b" =0

2a* — 2a* + a*b + a®b* =0

20" —2a* —a+1=0

Since a is rational, the only solution is @ = 1 and (a,b,c) = (1, -1, —1).

3. Let p(x) be a polynomial with integer coefficients. Assume that p(a) = p(b) = p(c) = —1,
where a, b, ¢ are three different integers. Prove that p(z) has no integral zeros.

Solution: Suppose for contradiction that p has an integral zero. Then we can write
p(z) = (r — d)Q(z) for some integer d. Then we get

~1=(a - d)Q)
= (b— d)Q)
= (¢~ D)Q(0)




Note that Q(k) € if k €, and similarly, &k — n € for k,n €. Now the only way to
multiply two integers to get —1 is for one of them to be +1 and the other to be —1.
Thus, by pigeonhole, two of a — d,b — d, ¢ — d are the same, which implies that two
of a, b, c are the same, a contradiction.

4. A monic polynomial, p, of degree 4 satisfies p(1) = 10, p(2) = 20, and p(3) = 30.
Determine p(12) + p(—8).

Solution: We have that p(x) — 10z is monic and has roots at 1,2,3. Thus p(z) —
10z = (z — 1)(x — 2)(x — 3)(z — ¢). Then p(12) = 11(10)(9)(12 — ¢) + 120 and
p(—8) = —9(—10)(—11)(—=8 — ¢) — 80. Thus p(12) + p(—8) = 990(12 — ) + 990(8 +
¢) + 40 = 990(20) + 40 = 19840.

5. A polynomial P with integer coefficients is called tri-divisible if P(x) is a multiple of 3
for all integers x. Determine necessary and sufficient conditions for P to be tri-divisible.

Solution: P(0), P(1), P(—1) = 0(3) are necessary and sufficient (which can easily
be seen by reducing the equation mod 3).

6. Determine all polynomials P for which P(z)?* —2 = 2P(2z* — 1).

Solution: Denote P(1) = a. We have a®?—2a—2 = 0. Then we have that P(z)—a has
aroot at 1, s0 P(x)—a = (x—1)P(x), or P(z) = (z—1)P(x)+a. Substituting this
into the initial relation and simplifying gets us (z — 1) [(x — 1) Pi(2)? + 2aPy(z)] =
4(z2=1)P,(22°—1)—a*+a+2. Thus for x # 1, we get (x—1)P(x)*+2a Py (z) = 4(z+
1)P;(22? — 1). By continuity, we get that the same expression must hold for x = 1
as well, as long as it is finite. Evaluating at x = 1 gets us 2aP;(1) = 8P;(1). Now, as
a # 4 (which can be verified by the quadratic formula), we see that either P;(1) = 0,
or P;(1) is infinite. Of course, the latter option isnt possible as P is a polynomial.
Thus, we can write P\ (z) = (z—1)Py(x), giving us P(z) = (x—1)?>Py(z) +a. We can
repeat this indefinitely, which is problematic as we should be bounded by the degree of
P. More precisely, suppose that P(x) = (z1)"Q(x)+a, where Q(1) # 0. Once again,
substituting into the initial relation and simplifying yields (z — 1)"Q(z)* +2aQ(z) =
4(x + 1)"Q(2x* — 1), giving us Q(1) = 0, a contradiction. Tt follows then that
P(z) = a, of which the precise value is left as an exercise in the quadratic formula.




7. Let P(z) be a polynomial of degree n > 1 with integer coefficients and let k be a positive
integer. Consider the polynomial Qx(z) = P(P(...P(P(x))...)), where P occurs k times.
Prove that there are at most n integers ¢ such that Q(t) = t.

Solution: If there is at most one integer ¢ satisfying Q,(¢) = ¢, then we are done.
Otherwise, let s,t be integers such that Qx(s) = s, Qx(t) = t. As P(x)is a polynomial
with integral coefficients, u — v|P(u) — P(v) for any integers u,v. So

s —t|P(s) = P(8)|Q2(s) = Qa(1)] . [Qk(s) — Qu(t) = s — ¢

and hence both s—t|P(s)— P(t) and P(s)—P(t)|s—t. This implies that P(s)—P(t) =
s—tor P(s)— P(t) =t — s. In other words,

P(s)—s=P(t)—t or P(s)+s=P(t)+t (1)

It is impossible to have P(s) — P(t) = s —t and P(u) — P(t) = t —u for distinct inte-
gral roots s, u, t of the equation Qx(z) = x. Otherwise P(s)—P(u) = s—t—(t—u) =
s+wu—2t. But P(s) — P(u) = s —uoru — s. In either cases, it yields s =t or u = t.
So only one equation in (1) is true for all the integer roots of Qx(z) = .

In either case, let us fix t. Then all integral roots of Qy(x) = = are also, at the
same times, roots of the equation P(x)z = 0 or P(z) +x = 0. Note that P(z)x and
P(zx) + x are polynomials of degree n, so there are at most n such roots.




