
UBC Math Circle 2020 Problem Set 1

Problems will be ordered roughly in increasing difficulty

1. (German FMC 2006-2007) Points E and F are taken on the sides AC and BC of ∆ABC
respectively, such that AE = BF . The circles passing through A,C, F and through
B,C,E intersect again at the point D. Prove that the line CD bisects ∠ACB.

Solution: We want to show ∠DCA = ∠DCF . Since ∠DCF = ∠DAF and
∠DCA = ∠DFA (ACFD is an inscribed equilateral), we would like to show that
∠DAF = ∠DFA, which can be achieved by showing AD = DF (alternatively you
can also show BD = DE).

Now, since ACFD is an inscribed equilateral, we have ∠DAE + ∠DFC = π, so
∠BFD = ∠DAE. Similarly, since BDEC is also an inscribed equilateral, we have
∠AED = ∠DBF . With the hypothesis that AE = BF , we conclude that the tri-
angles AED and FBD are congruent (angle-side-angle). Hence AD = DF , and we
are done.

2. (PRMO 2012) ABCD is a square with AB = 1. Equilateral triangles AY B and CXD
are drawn such that X and Y are inside the square. What is the length of XY ?

Solution: Let E be the intersection between AY and DX. We have that the ratio
of XY to AD is the same as EY to AE. We also have that 1 = AY = AE + EY ,
and AE = sin(30)

sin(120)
= 1√

3
. Then XY = 1−AE

AE
=
√

3− 1.

3. (AIME 1994) A circle with diameter PQ of length 10 is internally tangent at P to a
circle of radius 20. Square ABCD is constructed with A and B tangent on the larger
circle, CD tangent at Q to the smaller circle and the smaller circle outside ABCD. Find
the length of AB written in the form m+

√
n.
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Solution: Call the center of the larger circle O. Extend the diameter PQ to the
other side of the square (at point E), and draw AO. We now have a right triangle,
with hypotenuse of length 20. Since OQ = OP − PQ = 20 − 10 = 10, we know
that OE = AB − OQ = AB − 10. The other leg, AE, is just 1

2
AB. Apply the

Pythagorean Theorem:

(AB − 10)2 +

(
1

2
AB

)2

= 202

AB2 − 20AB + 100 +
1

4
AB2 − 400 = 0

AB2 − 16AB − 240 = 0

Thus the answer is 8 +
√

304.

4. (Putnam 2019 A2) In the triangle ∆ABC, let G be the centroid, and let I be the center
of the inscribed circle. Let α and β be the angles at the vertices A and B, respectively.
Suppose that the segment IG is parallel to AB and that β = 2 arctan(1

3
). Find α.

Solution: Let M and D denote the midpoint of AB and the foot of the altitude
from C to AB, respectively, and let r be the inradius of ∆ABC. Since C,G,M are
collinear with CM = 3GM , the distance from C to line AB is 3 times the distance
from G to AB, and the latter is r since IG||AB; hence the altitude CD has length
3r. By the double angle formula for tangent, CD

DB
= tan β = 3

4
, and so DB = 4r.

Let E be the point where the incircle meets AB; then EB = r

tan(β
2
)

= 3r. It follows

that ED = r, whence the incircle is tangent to the altitude CD. This implies that
D = A, ABC is a right triangle, and α = π

2
.

5. (USAMO 1996) Let ABC be a triangle. Prove that there is a line l (in the plane
of triangle ABC) such that the intersection of the interior of triangle ABC and the
interior of its reflection A′B′C ′ in l has area more than 2

3
the area of triangle ABC.

Solution: Let the triangle be ABC. Assume A is the largest angle. Let AD be the
altitude. Assume AB ≤ AC, so that BD ≤ BC/2. If BD > BC

3
, then reflect in AD.

If B′ is the reflection of B′, then B′D = BD and the intersection of the two triangles
is just ABB′. But BB′ = 2BD > 2

3
BC, so ABB′ has more than 2

3
the area of ABC.

If BD < BC/3, then reflect in the angle bisector of C. The reflection of A′ is a point
on the segment BD and not D. (It lies on the line BC because we are reflecting in
the angle bisector. A′C > DC because ∠CAD < ∠CDA = 90◦. Finally, A′C ≤ BC
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because we assumed ∠B does not exceed ∠A). The intersection is just AA′C. But
[AA′C]
[ABC]

= CA′

CB
> CD/CB ≥ 2/3.

6. (PAMO 2001) Let ABC be an equilateral triangle and let P0 be a point outside this
triangle, such that4AP0C is an isosceles triangle with a right angle at P0. A grasshopper
starts from P0 and turns around the triangle as follows. From P0 the grasshopper jumps
to P1, which is the symmetric point of P0 with respect to A. From P1, the grasshopper
jumps to P2, which is the symmetric point of P1 with respect to B. Then the grasshopper
jumps to P3 which is the symmetric point of P2 with respect to C, and so on. Compare
the distance P0P1 and P0Pn. n ∈ N .

Solution: We can use coordinate geometry to solve the problem. Let P0 = (0, 0),
A = (0, a), and C = (a, 0), making AC = a

√
2. To calculate the coordinates

of B, note that BP0 ⊥ AC since BCP0A is a kite. Thus, BP0 bissects AC, so
BP0 = a

√
2

2
+ a

√
6

2
. Additionally, ∠BP0C = 45◦ because ∠BP0C bissects ∠AP0C.

Thus, the coordinates of B are (a+a
√
3

2
, a+a

√
3

2
).

By repeatedly applying the Midpoint Formula, we can determine the coordinates of
P1, P2, P3, and so on. We can also use the Distance Formula to calculate the distance
of P0P1, P0P2, and so on. The values are shown in the below table.

n Coordinates of Pn P0Pn
1 (0, 2a) 2a

2 (a+ a
√

3,−a+ a
√

3) 2a
√

2

3 (a− a
√

3, a− a
√

3) a
√

6− a
√

2

4 (−a+ a
√

3, a+ a
√

3) 2a
√

2
5 (2a, 0) 2a
6 (0, 0) 0
7 (0, 2a) 2a
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Note that the coordinates of Pn as well as the distance P0Pn cycle after n = 6. Thus,
P0Pn =

√
6−
√
2

2
· P0P1 if n ≡ 3 (mod 6), P0Pn = 0 if n ≡ 0 (mod 6), P0Pn = P0P1 if

n ≡ 1, 5 (mod 6), and P0Pn =
√

2 · P0P1 if n ≡ 2, 4 (mod 6).
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