
UBC Math Circle 2020 Problem Set 4

Problems will be ordered roughly in increasing difficulty

1. A mouse eats its way through a 3 × 3 × 3 cube of cheese by eating all the 1 × 1 × 1
subcubes. If it starts at a corner and always moves to an adjacent subcube (sharing a
face of area 1) can it do this and eat the centre subcube last? If yes then give an order
of subcubes eaten, if no then prove it is impossible.

Solution: One colours each subcube (i, j, k) white if i + j + k ≡ 0 (mod 2) and
black if otherwise. Note that for each movement that the mouse makes, the colour
of its subcube alternates. However, since the centre subcube and any corner are
coloured differently, the mouse has to traverse an even number of subcubes which is
a contradiction since there are 27 subcubes.

2. Define a trail of an undirected graph G to be a sequence of connecting edges such that
no edges occur more than once. Let G be a connected graph and let k be the length
of the longest trail. Prove that if 2 trails in G have length k, then there must be some
vertex v ∈ V (G) that is contained in both trails.

Solution: Let T1 and T2 be the two trails. Because G is connected, there must be a
path from vertex v1 ∈ T1 to some v2 ∈ T2. WLOG, we may assume that v1 is the last
time that this path intersects T1, and v2 is the first time it intersects T2. We observe
that v1 (resp v2) divides T1 (resp T2) into two parts, one of which must have length
≥ k

2
. Consider the trail that takes each longer half, as well as the path connecting

v1 to v2. By construction, if v1 6= v2, there must be at least one edge between v1 and
v2, so our new path has length ≥ k

2
+ k

2
+ 1 = k + 1, a contradiction.

3. Suppose there are n people at a meeting, and every group of four people contains a
person who know the other three. Prove that there is a person who knows every other
person at the meeting.

Solution: This problem only makes sense for n ≥ 4. Let v be a vertex of maximum
degree. We wish to show that every other vertex is adjacent to v. Suppose not, so
there exists w that is not adjacent to v. For any pair of vertices x, y adjacent to v,
consider the set of 4 vertices {v, w, x, y}. We have that v and w are not adjacent, so
one of x, y (WLOG x) realizes the given property. In particular, x and y are always
adjacent. Thus, we have x is adjacent to every other neighbour of v, as well as v and
w, giving x higher degree than v.
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4. (BWM 1998) There exist polyhedrons that have more faces than vertices. Find the
smallest number of triangular faces that such a polyhedron can have.

Solution: The minimum number of triangles in such a polygon is 6. One such
construction can be obtained by gluing two tetrahedrons together by the face.

We can use Euler’s characteristic V −E + F = 2, as any polygon can be thought of
as a planar graph. Let T denote the number of triangular faces of a polyhedron, Q
be the number of quadrilateral faces and X be the number of faces with 5 or more
sides. By assumption F > V so 2F > 2 + E. Furthermore, F = T + Q + X and
summing up the edges along each face we get 2E ≥ 3T + 4Q + 5X. Hence,

4F = 4(T + Q + X) > 4 + 2E ≥ 4 + 3T + 4Q + 5X

Rearranging the terms we get:
T > 4 + X

Clearly T > 4. Can we have a polygon one where T = 5? Then X = 0 and Q is
arbitrary. We can’t because the sum of edges around the faces must be even, so we
conclude that T ≥ 6.

5. Let Qk be the graph whose vertices correspond to the sequences (a1, a2, · · · , ak) where
each ai = 0 or 1, and whose edges join those sequences that differ in just one place.
Show that we can traverse from some vertex, visiting each once and going back to the
initial vertex (Hamiltonian).

Solution: We can construct this Hamiltonian cycle inductively. For k = 0, the
empty path suffices in the empty Q0 graph.

Let’s denote the vertices of the Hamiltonian cycle of Qk as the list ordered in the
order of the cycle Hk = {v1, v2, v3, . . . v2k}, and Hk = {v2k , v2k−1, . . . , v1} denote the
reversed set. Let (0Hk) denote the sequence where you replace every instance of vi
with (0, vi), and similarly for (1Hk). Then, a Hamiltonian cycle for k + 1 can be
written concisely as:

Hk+1 = (0Hk, 1Hk)

This construction is called a Gray code.

6. (JMO 1997) Let G be a graph with 9 vertices. Suppose given any five points of G,
there exist at least two edges with both endpoints among the five points. What is the
minimum possible number of edges in G?
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Solution: The minimum number of edges 9, with three disjoint cycles of size 3.

Let an be the minimum number of edges in a graph with n vertices satisfying the
condition. We can show that an+1 ≥ n+1

n−1
an. Consider any graph satisfying this

property on n + 1 vertices and let li denote the number of edges left in the graph if
we removed vertex i and all edges adjacent to it. Clearly an ≥ li for all i. Furthermore
l1 + l2 + · · · + ln+1 = (n − 1)an+1, since each edge is counted n − 1 times when we
sum up the edges from these graphs.

Since a5 = 2, a6 ≥ 3, a7 ≥ 5, a8 ≥ 7, we get a9 ≥ 9.
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