UBC Math Circle 2022 Problem Set 1
1. Prove that the Diophantine equation
PP Bty e+ e fayr =0

has no solutions in nonzero integers. (Hint: Consider the parity of the left hand side in
various cases. )

Solution: (Joanna Weng)

Using the hint, we find that the given equation has integer solutions (x,y, z) only
when x,y, z are all even. This is because in all other cases the left hand side is odd
while the right hand side is even.

So for some a, b, c € Z,
r=2a, y=2b, 2z=2c.
Substituting, we see that
8(a® + b + ¢ + a®*b + b*c + c*a) = 0,

which implies that (a, b, c) is also a solution to the given equation. But then a,b,c
must all be even. This leads to an infinite descent (assuming z,y, z are not all zero);
hence, the given equation cannot have solutions in nonzero integers.

2. Let k be a positive integer. The sequence (a,,), is defined by a; = 1, and for n > 2, a,
is the nth positive integer greater than a,_; that is congruent to n modulo k. Find a,
in closed form.

Solution: (Young Lin)

Since a,—1 = n — 1 mod k, it follows that
ap =ap1+ 1+ (n—1)k
by definition of a,,. Then solving

ap = ap_1+ 1+ (n— 1)k,
a1:1

we obtain a,, in closed form:
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3. (a) Show that there exist infinitely many integers =, y and z such that
2+t =22+ 8.
(b) Show that there exist infinitely many integers a, b, ¢ such that

a’+b> =%+ 3.

Solution: (Yuqi Xiao)
(a) By letting z = t? we observe that
228 +8 =20 +8= (£ +2)* + (2 — 2)%.
Hence,
r=13+42 y=t3-2 z=1* (t€Z)

generates infinitely many solutions.

(b) First, we let ¢ = 3k 4+ 1 and observe that
? +3=9k>+6k+4 = (3k — 2)? + 18k.
Then letting k = 18¢2, we see that

a=540* -2 b=18(, c=54*+1 (L €Z)

generates infinitely many solutions.

4. A subset S of N is called highly composite if for every n > 2 and every choice of distinct
elements a1, as, ..., a, € S, the sum " | a; is composite. For example, the set {3,5, 7}
is highly composite since 3+ 5,347, 5+ 7 and 3 + 5+ 7 are all composite.

(a) Prove or disprove: There exists an infinite highly composite set S containing only
prime numbers.

(b) Can the set P of all primes be partitioned into infinite highly composite subsets?



Solution: (Oakley Edens)

(a)

Let S be a finite highly composite subset of N containing only primes; such
a set exists as the set {2}, for instance, satisfies this condition. To show
that we can (recursively) construct an infinite highly composite set containing
only primes, it is enough to show that we can find a prime p ¢ S such that
S U {p} is highly composite. The remaining details can be filled in by the
reader. Let r1,...,79n_1 be the distinct nonempty sums of elements in S,
and let qi,...,qon_1 be distinct primes such that ged(r;, ¢;) = 1. Consider
the system of linear congruences: = +r; = 0 (mod ¢;). Since ¢; and ¢; are
coprime for all © # j, by the Chinese Remainder Theorem, this system is
equivalent to a single congruence x + R = 0 (mod Q) where @ = Hle_l G-
Suppose ged(R, Q) # 1. Then there exists some ¢; € Q with ¢;|R. But then
R =r; =0 (mod ¢;), which contradicts the choice of ¢;. Thus ged(R, Q) = 1.
Dirichlet’s theorem on arithmetic progressions implies that Qm — R is prime for
infinitely many m. Let p be the smallest prime in this arithmetic progression
such that p 4+ r; # ¢; for all 7, and p € S. Then since p + r; is divisible by ¢;
vet p+1; # ¢; for all 1 < ¢ < 2" — 1, it follows that the set S U {p} is highly
composite as desired.

We show that we can partition the set P of all primes into infinite highly
composite subsets. To do this, we perform the following infinite procedure that
takes as input an arbitrary prime p, and returns as output a desired partition.

procedure (p: prime)

Let S%l) = {p}.

Let ¢ := 1.

for k=1,2,3...

Let m be the largest prime in Ule Si(k).

Let n; := |Sl-(k)| for 1 <i < /{. (It is clear that ny > ng > -+ > ny.)

Let r[i,1],...,r[i,2" — 1] be the distinct nonempty sums of elements in Si(k)
for 1 < < ¢ so that r[i, 1] is the smallest among these sums.

Step 0: Choose ¢[1], ..., ¢[2" —1] distinct primes such that ged(r[i, j], ¢[j]) =1
for1<i</land 1l <j<2%—1, and rlu, 1] # r[v,1] (mod ¢[1]) for u # v.
Let a; be the smallest prime solution to the system of congruences x + r[i, j| =
0 (mod ¢[j]) that additionally satisfies a; ¢ Ule Si(k) and a; + r[i, j| # q[j] for
1<i<fand1<j<2m—1.

Step 1: Define sets Si(kﬂ) = Si(k) U{a;} for 1 <i <.




Step 2: Define sets Sﬁjl) := {pi} where p; is the i-th smallest prime such that

pi & Ule Si(k) and p; < m. If there are no new sets defined this way, define

gkl

11 ) .= {p'} where p' is the smallest prime larger than m.

Let ¢ := the total number of sets Si(kﬂ) defined in Step 1 and Step 2. (This
number increases with each iteration.)

end for

return {sup, S | i € N}

end procedure

Now we prove that the output of this procedure is indeed a desired partition.

Define S; := sup,, Si(k) for each ¢ € N. From what was proved in (a), each S;
is an infinite highly composite subset of P. Thus it remains only to show that
the sets S; partition P.

Observe that, at the kth iteration, Step 1 adjoins a prime to each Si(k) that is
distinct from those that belong to any Sl-(k). Thus for each prime p € P, there
is an eventual Step 1 where a prime larger than p is adjoined to a constructed
set. Following this, Step 2 produces a set containing p if p had not already
belonged to some previously constructed set. Thus (J;, S; = P.

Next, at the kth iteration: It is clear that Step 2 cannot produce a set {p} if
pE ka) for some 7. Similarly, Step 1 cannot adjoin a prime p to a set SZ-(k) if p
is in any of the sets Si(k). Thus if Si(k) N S](-k) # () for some i # j, then a; = a;
at some iteration k' < k. But by construction, the smallest primes p; € Si(k/)
and p; € S](-k/) do not coincide, whence a; = —p; = —r[i, 1] # —r[j, 1] = —p; =
a; (mod ¢[1]) at iteration &’. This is a contradiction. So S; N S; = 0 for all
1 # j. Thus the sets S; partition P into infinite highly composite subsets.

5. Given a positive integer k > 2, set a; = 1 and, for every integer n > 2, let a,, be the
smallest solution of equation

that exceeds a,,_1. Prove that all primes are among the terms of the sequence a4, ao, . ..

Solution: (Arvin Sahami)

Consider a positive integer & > 2. Let S be the set of all k&th power free natural
numbers, i.e., the set of all n € N such that there is no prime p where p*|n.




For every n € N we define its kth power free part as the smallest divisor d of n such
that % is a perfect kth power. It is not hard to see that the kth power free part of
any natural number is unique.

Let s1, 82,... be the members of S listed in increasing order.
We show by induction that a; = s; for all 7 € N.
The base case when ¢ = 1 is clear.

Assume that this claim holds for i =1,...,n.

x
Let m; := {’“ —J where 2 =1,...,n.
S;

Observe that m; is the largest integer such that mF - s; < .

So m; is the number of positive integers less than or equal to = that have s; as their
kth power free part. Then the sum ", m; can be interpreted as the total number
of positive integers less than or equal to x with one of sy, ..., s, as their kth power
free part. Since Y, m;+1 is an integer, we need only consider integer values for .

Now a natural number z < s,,; has a kth power free part among si, so, ..., s,; if
Z = Spy1 then its kth power free part is s,.;. And so, when x = s,.1, the sum

dow . m; is exactly z — 1.
n Sn
2 H/TJ +1= s
i=1 Si

But if s, < & < sp41, then by the same reasoning, the sum > . m; is exactly .
Therefore, s, is the smallest solution of

Hence,

that is larger than a, = s,.

So the sequence aq, as, ... is precisely the sequence si, so,... Since all primes are of
course kth power free, it follows that they are among aq, as, . . .




