
UBC Math Circle 2022 Problem Set 1

1. Prove that the Diophantine equation

x3 + y3 + z3 + x2y + y2z + z2x+ xyz = 0

has no solutions in nonzero integers. (Hint: Consider the parity of the left hand side in
various cases.)

Solution: (Joanna Weng)

Using the hint, we find that the given equation has integer solutions (x, y, z) only
when x, y, z are all even. This is because in all other cases the left hand side is odd
while the right hand side is even.

So for some a, b, c ∈ Z,

x = 2a, y = 2b, z = 2c.

Substituting, we see that

8(a3 + b3 + c3 + a2b+ b2c+ c2a) = 0,

which implies that (a, b, c) is also a solution to the given equation. But then a, b, c
must all be even. This leads to an infinite descent (assuming x, y, z are not all zero);
hence, the given equation cannot have solutions in nonzero integers.

2. Let k be a positive integer. The sequence (an)n is defined by a1 = 1, and for n ≥ 2, an
is the nth positive integer greater than an−1 that is congruent to n modulo k. Find an
in closed form.

Solution: (Young Lin)

Since an−1 ≡ n− 1 mod k, it follows that

an = an−1 + 1 + (n− 1)k

by definition of an. Then solving

an = an−1 + 1 + (n− 1)k,

a1 = 1

we obtain an in closed form:

an = n+
n(n− 1)k
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3. (a) Show that there exist infinitely many integers x, y and z such that

x2 + y2 = 2z3 + 8.

(b) Show that there exist infinitely many integers a, b, c such that

a2 + b2 = c2 + 3.

Solution: (Yuqi Xiao)

(a) By letting z = t2 we observe that

2z3 + 8 = 2t6 + 8 = (t3 + 2)2 + (t3 − 2)2.

Hence,

x = t3 + 2, y = t3 − 2, z = t2 (t ∈ Z)

generates infinitely many solutions.

(b) First, we let c = 3k + 1 and observe that

c2 + 3 = 9k2 + 6k + 4 = (3k − 2)2 + 18k.

Then letting k = 18ℓ2, we see that

a = 54ℓ2 − 2, b = 18ℓ, c = 54ℓ2 + 1 (ℓ ∈ Z)

generates infinitely many solutions.

4. A subset S of N is called highly composite if for every n ≥ 2 and every choice of distinct
elements a1, a2, . . . , an ∈ S, the sum

∑n
i=1 ai is composite. For example, the set {3, 5, 7}

is highly composite since 3 + 5, 3 + 7, 5 + 7 and 3 + 5 + 7 are all composite.

(a) Prove or disprove: There exists an infinite highly composite set S containing only
prime numbers.

(b) Can the set P of all primes be partitioned into infinite highly composite subsets?
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Solution: (Oakley Edens)

(a) Let S be a finite highly composite subset of N containing only primes; such
a set exists as the set {2}, for instance, satisfies this condition. To show
that we can (recursively) construct an infinite highly composite set containing
only primes, it is enough to show that we can find a prime p /∈ S such that
S ∪ {p} is highly composite. The remaining details can be filled in by the
reader. Let r1, . . . , r2n−1 be the distinct nonempty sums of elements in S,
and let q1, . . . , q2n−1 be distinct primes such that gcd(ri, qi) = 1. Consider
the system of linear congruences: x + ri ≡ 0 (mod qi). Since qi and qj are
coprime for all i ̸= j, by the Chinese Remainder Theorem, this system is
equivalent to a single congruence x + R ≡ 0 (mod Q) where Q =

∏2n−1
i=1 qi.

Suppose gcd(R,Q) ̸= 1. Then there exists some qi ∈ Q with qi|R. But then
R ≡ ri ≡ 0 (mod qi), which contradicts the choice of qi. Thus gcd(R,Q) = 1.
Dirichlet’s theorem on arithmetic progressions implies that Qm−R is prime for
infinitely many m. Let p be the smallest prime in this arithmetic progression
such that p + ri ̸= qi for all i, and p ̸∈ S. Then since p + ri is divisible by qi
yet p + ri ̸= qi for all 1 ≤ i ≤ 2n − 1, it follows that the set S ∪ {p} is highly
composite as desired.

(b) We show that we can partition the set P of all primes into infinite highly
composite subsets. To do this, we perform the following infinite procedure that
takes as input an arbitrary prime p, and returns as output a desired partition.

procedure (p: prime)

Let S
(1)
1 := {p}.

Let ℓ := 1.

for k = 1, 2, 3 . . .

Let m be the largest prime in
⋃ℓ

i=1 S
(k)
i .

Let ni := |S(k)
i | for 1 ≤ i ≤ ℓ. (It is clear that n1 ≥ n2 ≥ · · · ≥ nℓ.)

Let r[i, 1], . . . , r[i, 2ni − 1] be the distinct nonempty sums of elements in S
(k)
i

for 1 ≤ i ≤ ℓ so that r[i, 1] is the smallest among these sums.

Step 0: Choose q[1], . . . , q[2n1−1] distinct primes such that gcd(r[i, j], q[j]) = 1
for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ 2ni − 1, and r[u, 1] ̸≡ r[v, 1] (mod q[1]) for u ̸= v.
Let ai be the smallest prime solution to the system of congruences x+ r[i, j] ≡
0 (mod q[j]) that additionally satisfies ai ̸∈

⋃ℓ
i=1 S

(k)
i and ai + r[i, j] ̸= q[j] for

1 ≤ i ≤ ℓ and 1 ≤ j ≤ 2ni − 1.

Step 1: Define sets S
(k+1)
i := S

(k)
i ∪ {ai} for 1 ≤ i ≤ ℓ.
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Step 2: Define sets S
(k+1)
ℓ+i := {pi} where pi is the i-th smallest prime such that

pi ̸∈
⋃ℓ

i=1 S
(k)
i and pi < m. If there are no new sets defined this way, define

S
(k+1)
ℓ+1 := {p′} where p′ is the smallest prime larger than m.

Let ℓ := the total number of sets S
(k+1)
i defined in Step 1 and Step 2. (This

number increases with each iteration.)

end for

return {supk S
(k)
i | i ∈ N}

end procedure

Now we prove that the output of this procedure is indeed a desired partition.

Define Si := supk S
(k)
i for each i ∈ N. From what was proved in (a), each Si

is an infinite highly composite subset of P . Thus it remains only to show that
the sets Si partition P .

Observe that, at the kth iteration, Step 1 adjoins a prime to each S
(k)
i that is

distinct from those that belong to any S
(k)
i . Thus for each prime p ∈ P , there

is an eventual Step 1 where a prime larger than p is adjoined to a constructed
set. Following this, Step 2 produces a set containing p if p had not already
belonged to some previously constructed set. Thus

⋃∞
i=1 Si = P .

Next, at the kth iteration: It is clear that Step 2 cannot produce a set {p} if

p ∈ S
(k)
i for some i. Similarly, Step 1 cannot adjoin a prime p to a set S

(k)
i if p

is in any of the sets S
(k)
i . Thus if S

(k)
i ∩ S

(k)
j ̸= ∅ for some i ̸= j, then ai = aj

at some iteration k′ < k. But by construction, the smallest primes pi ∈ S
(k′)
i

and pj ∈ S
(k′)
j do not coincide, whence ai ≡ −pi = −r[i, 1] ̸≡ −r[j, 1] = −pj ≡

aj (mod q[1]) at iteration k′. This is a contradiction. So Si ∩ Sj = ∅ for all
i ̸= j. Thus the sets Si partition P into infinite highly composite subsets.

5. Given a positive integer k ≥ 2, set a1 = 1 and, for every integer n ≥ 2, let an be the
smallest solution of equation

x = 1 +
n−1∑
i=1

⌊
k

√
x

ai

⌋
that exceeds an−1. Prove that all primes are among the terms of the sequence a1, a2, . . .

Solution: (Arvin Sahami)

Consider a positive integer k ≥ 2. Let S be the set of all kth power free natural
numbers, i.e., the set of all n ∈ N such that there is no prime p where pk|n.
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For every n ∈ N we define its kth power free part as the smallest divisor d of n such
that n

d
is a perfect kth power. It is not hard to see that the kth power free part of

any natural number is unique.

Let s1, s2, . . . be the members of S listed in increasing order.

We show by induction that ai = si for all i ∈ N.
The base case when i = 1 is clear.

Assume that this claim holds for i = 1, . . . , n.

Let mi :=

⌊
k

√
x

si

⌋
where i = 1, . . . , n.

Observe that mi is the largest integer such that mk
i · si ≤ x.

So mi is the number of positive integers less than or equal to x that have si as their
kth power free part. Then the sum

∑n
i=1mi can be interpreted as the total number

of positive integers less than or equal to x with one of s1, . . . , sn as their kth power
free part. Since

∑n
i=1mi+1 is an integer, we need only consider integer values for x.

Now a natural number z < sn+1 has a kth power free part among s1, s2, . . . , sn; if
z = sn+1 then its kth power free part is sn+1. And so, when x = sn+1, the sum∑n

i=1mi is exactly x− 1.

Hence,
n∑

i=1

⌊
k

√
sn+1

si

⌋
+ 1 = sn+1.

But if sn < x < sn+1, then by the same reasoning, the sum
∑n

i=1mi is exactly x.
Therefore, sn+1 is the smallest solution of

n∑
i=1

⌊
k

√
x

si

⌋
+ 1 = x

that is larger than an = sn.

So the sequence a1, a2, . . . is precisely the sequence s1, s2, . . . Since all primes are of
course kth power free, it follows that they are among a1, a2, . . .
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