
UBC Math Circle 2022 Problem Set 2

1. Let
(1 + x+ x2)n = a0 + a1x+ a2x

2 + · · ·+ a2nx
2n

be an identity in x. Find a0 + a2 + a4 + · · ·+ a2n in terms of n.

Solution: (Joanna Weng)

Substituting x = ±1, we see that

1 = a0 − a1 + a2 − a3 + · · · − a2n−1 + a2n,

3n = a0 + a1 + a2 + a3 + · · ·+ a2n−1 + a2n,

which added together gives

3n + 1 = 2(a0 + a2 + a4 + · · ·+ a2n)

=⇒ a0 + a2 + a4 + · · ·+ a2n =
3n + 1

2
.

2. Let f(x) = x2 − 2. For each n ∈ N, we let f ◦n = f ◦ f ◦ . . . ◦ f (n times). Prove that for
each n ∈ N there exist 2n real numbers x such that f ◦n(x) = x. (Hint: Let x be a real
number such that f ◦n(x) = 0 or ±2 and consider what happens to x under f ◦(n+1).)

Solution: (Oakley Edens)

First we prove the following lemma.

Lemma 1. For every integer n ≥ 1 there exists an ordered list of real numbers
Ln = {x1 < . . . < x2n+1} in the interval [−2, 2] such that f ◦n(xi) = −2 if i is even
and f ◦n(xi) = 2 if i is odd.

Proof (Lemma 1). The base case n = 1 is clear since L1 = {−2, 0, 2} is such a
list. Next, suppose it is true for n ≤ m for some m. By the induction hypothesis,
there exists a list Lm = {x1, . . . , x2m+1} satisfying the desired property. Since f ◦m is
continuous, by the intermediate value theorem there exists a yi ∈ (xi, xi+1) for every
1 ≤ i ≤ 2m, for which f ◦m(yi) = 0. Define Lm+1 = {x1, y1, x2, y2, . . . , y2m , x2m+1}.
Lm+1 is clearly an ordered list containing real numbers in the interval [−2, 2] with
|Lm+1| = |Lm|+ 2m = 2m+1 + 1. Finally, note that the odd positions in this list are
occupied by the elements {xi} while the even positions are occupied by the elements
{yi}. It follows immediately that f ◦(m+1)(xi) = f(f ◦m(xi)) = (±2)2 − 2 = 2 while
f ◦(m+1)(yi) = f(f ◦m(yi)) = (0)2 − 2 = −2. Thus Lm+1 is the desired list.
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Now we prove the main result. Fix n ≥ 1 and let Ln = {x1, . . . , x2n+1} be an
ordered list of real numbers with the property stated in Lemma 1. Since xi and xi+1

are in [−2, 2] for each 1 ≤ i ≤ 2n, it follows that f ◦n(xi) − xi < 0 if and only if
f ◦n(xi+1) − xi+1 ≥ 0 with equality only when xi+1 = 2. Then by the intermediate
value theorem, the function f ◦n(x) − x has a root in each interval (xi, xi+1] where
1 ≤ i ≤ 2n, which implies that it has at least 2n real roots. Since deg(f ◦n(x)−x) = 2n,
the fundamental theorem of algebra says that f ◦n(x)− x can have at most 2n roots.
Thus f ◦n(x)− x has precisely 2n real roots.

3. Let S be a subset of R2. It is called convex if for (a, b), (c, d) ∈ S, the line segment
joining (a, b) and (c, d) lies entirely in S. It is centrally symmetric if whenever (a, b) ∈ S,
then (−a,−b) ∈ S. Prove that if the area of a convex and centrally symmetric set S is
greater than 4, then S contains a point of Z2 other than (0, 0). (Hint: Consider the map
(x, y) 7→ (x mod 2, y mod 2) on S. Can this map be injective if the area of S is greater
than 4?)

Solution: (Neo Huang)

Let f denote the map (x, y) 7→ (x mod 2, y mod 2). Observe that f maps points in
S to points in the 2× 2 square [0, 2)× [0, 2). Hence, the area of f(S) is less than or
equal to 4. We can show that is map is area preserving whenever it is injective since

Area(f(S)) =
∑

(m,n)∈Z2

Area(f(S ∩ ([2m, 2m+ 2)× [2n, 2n+ 2))))

=
∑

(m,n)∈Z2

Area(S ∩ ([2m, 2m+ 2)× [2n, 2n+ 2))) = Area(S),

where the second equality is because f restricted to each [2m, 2m+2)× [2n, 2n+2)
is just a translation.

But S has an area greater than 4 and f(S) has an area less than or equal to 4;
hence, f cannot be injective. So there exist two points p1 and p2 in S such that
f(p1) = f(p2). But then p2 = p1 + (2i, 2j) for some integers i and j not both zero.
Since S is centrally symmetric, the point −p1 is also in S. Furthermore, since S
is convex, the line segment joining −p1 and p2 lies entirely in S. Therefore, the
midpoint of this segment

1

2
(−p1 + p2) =

1

2
(−p1 + p1 + (2i, 2j)) = (i, j)

lies in S. Since i and j are integers that are not both zero, it follows that S contains
a point of Z2 other than (0, 0).
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4. (a) Suppose α ∈ C is a root of some nonzero polynomial in Q[x]. Write Q[α] to denote
the set {P (α) | P ∈ Q[x]}. Show that for any β ∈ Q[α] \ {0}, there exists γ ∈ Q[α]
such that βγ = 1. (You may assume that Q[α] is a finite-dimensional Q-vector
space, a consequence of which is that there exists n ∈ N such that for all v1, . . . , vn ∈
Q[α], there exist λ1, . . . , λn ∈ Q not all zero such that λ1v1 + · · ·+ λnvn = 0.)

Solution: (Victor Wang)

Let β ∈ Q[α]\{0}. We show that there exists γ ∈ Q[α] such that βγ = 1. Since
Q[α] is a finite-dimensional Q-vector space, for some n ∈ N there is a nontrivial
Q-linear relation between β1, . . . , βn of the form λ1β

1 + · · · + λnβ
n = 0 (note

each βi ∈ Q[α]). So β is the root of some nonzero polynomial in Q[x].

Therefore, there exists a nonzero polynomial Q ∈ Q[x] of minimum degree
vanishing on β. Since β ̸= 0, the constant term of Q is not zero, or else β would
be a root of nonzero 1

x
Q ∈ Q[x] of smaller degree. Let c be the nonzero constant

term of Q. Then S = − 1
cx
(Q − c) is a polynomial in Q[x]. Since β ∈ Q[α], it

follows that S(β) ∈ Q[α]. Then since Q(β) = 0, taking γ = S(β), we see that
βγ = − β

cβ
(Q(β)− c) = 1.

(b) Let α ∈ C be a root of the polynomial x4 − 4x2 + 2 ∈ Q[x]. You may assume that
α and 1 + α + α2 are nonzero. Write α−1 and (1 + α + α2)−1 as elements of Q[α].

Solution: (Victor Wang)

Since x4 − 4x2 + 2 ∈ Q[x] has a nonzero constant term and vanishes on α, by
our solution to part (a), the inverse of α is −1

2
(α3 − 4α).

To compute the inverse of 1 + α + α2, we will need a different approach since
it is difficult to find a polynomial in Q[x] vanishing 1 + α + α2. We will apply
the Euclidean (division) algorithm to polynomials in Q[x]. By the division
algorithm, x4 − 4x2 + 2 = (x2 − x − 4)(x2 + x + 1) + (5x + 6). Again by the
division algorithm, x2 + x+ 1 =

(
1
5
x− 1

25

)
(5x+ 6) + 31

25
.

So

1 =
25

31
(x2 + x+ 1)− 25

31

(
1

5
x− 1

25

)
(5x+ 6)

=
25

31

[
1 +

(
1

5
x− 1

25

)
(x2 − x− 4)

]
(x2 + x+ 1)

− 25

31

(
1

5
x− 1

25

)
(x4 − 4x2 + 2).
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Evaluating the above expression at α, we deduce that

(1 + α + α2)−1 =
25

31

[
1 +

(
1

5
α− 1

25

)
(α2 − α− 4)

]
=

1

31
(5α3 − 6α2 − 19α + 29).

5. Let P (z) = adz
d+ · · ·+a1z+a0 be a polynomial with complex coefficients. The reverse

of P is defined by
P ∗(z) = a0z

d + a1z
d−1 + · · ·+ ad.

(a) Prove that

P ∗(z) = zdP

(
1

z

)
.

Solution: (Arvin Sahami)

Observe that

P

(
1

z̄

)
= ā0 + ā1

1

z
+ ...+ ād

1

zd
,

which implies that P ∗(z) = zdP
(
1
z̄

)
.

(b) Let m be a positive integer and let q(z) be a monic nonconstant polynomial with
complex coefficients. Suppose that all roots of q(z) lie inside or on the unit circle.
Prove that all roots of the polynomial

Q(z) = zmq(z) + q∗(z)

lie on the unit circle.

Solution: (Arvin Sahami)

Let {zi} be the roots of q. Then we can write q(x) = (z − z1)...(z − zn) where
|zi| ≤ 1. Taking the reverse of q we get

q∗(z) = znq

(
1

z̄

)
= zn

(
1

z
− z̄1

)
...

(
1

z
− z̄n

)
= zn

(
1− zz̄1

z

)
...

(
1− zz̄n

z

)
= (1− zz̄1) · · · (1− zz̄n).
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Setting Q(z) = 0, we get

zmq(z) = −q∗(z) =⇒ zm(z − z1)...(z − zn) = −(1− zz̄1)...(1− zz̄n) (1)

=⇒ |zm(z − z1)...(z − zn)| = |(1− zz̄1)...(1− zz̄n)| (2)

Suppose z = zi for some 1 ≤ i ≤ n. Then (1) implies that 1 − zizj = 0, which
means that |z| = |zi| = |zj| = 1.

On the other hand, suppose that z ̸= zi. By (2), observe that

|z|m = |zm| = |1− zz̄1|
|z − z1|

· · · |1− zz̄n|
|z − zn|

. (3)

If |z| ≤ 1, then (1−|z|2)(1−|zi|2) ≥ 0 for each 1 ≤ i ≤ n. But then |z|2|zi|2−1 ≥
|z|2 + |zi|2, which implies that

|1− zz̄i|2 = (1− zz̄i)(1− z̄zi) ≥ (z − zi)(z̄ − z̄i) = |z − zi|2.

Hence, by (3), |z|m ≥ 1 so that |z| ≥ 1. Since we assumed that |z| ≤ 1, we see
that |z| = 1 as desired.

A similar argument shows that |z| = 1 when |z| ≥ 1.
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