UBC Math Circle 2022 Problem Set 2

1. Let
(14+z+ 23" = ag + a1z + apa® + - - - + ag, 2™

be an identity in z. Find ag + as + a4 + - - - + a9, in terms of n.

Solution: (Joanna Weng)

Substituting x = £+1, we see that

2

l=ay—ar+a" —az+ - — a1 + gy,
2

3"=ap+ay+a"+az3+ -+ a1+ az,

which added together gives

3"+ 1=2(ap+as+as+ -+ asy)
3"+1
5

— agt+as+ag+ -+ ao, =

2. Let f(z) =2*—2. Foreachn € N, welet f°" = fo fo...o f (n times). Prove that for
each n € N there exist 2" real numbers z such that f°*(x) = x. (Hint: Let = be a real
number such that f"(z) = 0 or &2 and consider what happens to z under fom+1.)

Solution: (Oakley Edens)

First we prove the following lemma.

Lemma 1. For every integer n > 1 there exists an ordered list of real numbers
L, ={x1 < ... < xoni1} in the interval [—2,2] such that f°"(x;) = —2 if i is even
and fo"(x;) =2 if i is odd.

Proof (Lemma 1). The base case n = 1 is clear since L; = {—2,0,2} is such a
list. Next, suppose it is true for n < m for some m. By the induction hypothesis,
there exists a list L,, = {z1,...,xom 1} satisfying the desired property. Since f°™ is
continuous, by the intermediate value theorem there exists a y; € (x;, x;41) for every
1 <4 < 2™ for which f°"(y;) = 0. Define L,,+1 = {x1, 41, %2, Y2, . .., Yom, Tom 11 }.
Ly11 is clearly an ordered list containing real numbers in the interval [—2, 2] with
|Lii1| = |Lim| +2™ = 27! + 1. Finally, note that the odd positions in this list are
occupied by the elements {x;} while the even positions are occupied by the elements
{y;}. Tt follows immediately that foU"+9(z;) = f(fo™(z;)) = (£2)? — 2 = 2 while
et () = F(F(yi)) = (0)2 — 2 = —2. Thus L,,; is the desired list. O
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Now we prove the main result. Fix n > 1 and let L, = {z1,...,29241} be an
ordered list of real numbers with the property stated in Lemma 1. Since x; and ;4
are in [—2,2] for each 1 < ¢ < 2" it follows that f*(x;) —x; < 0 if and only if
fo"(wit1) — 41 > 0 with equality only when z;;; = 2. Then by the intermediate
value theorem, the function f*(x) — x has a root in each interval (z;,x;1] where
1 <¢ < 2" which implies that it has at least 2" real roots. Since deg(f°"(z)—z) = 2",
the fundamental theorem of algebra says that f°"(z) — x can have at most 2" roots.
Thus f°"(x) — x has precisely 2" real roots.

3. Let S be a subset of R% It is called convez if for (a,b), (c,d) € S, the line segment
joining (a,b) and (¢, d) lies entirely in S. It is centrally symmetric if whenever (a,b) € S,
then (—a, —b) € S. Prove that if the area of a convex and centrally symmetric set S is
greater than 4, then S contains a point of Z? other than (0,0). (Hint: Consider the map
(z,y) — (z mod 2,y mod 2) on S. Can this map be injective if the area of S is greater
than 47)

Solution: (Neo Huang)

Let f denote the map (x,y) — (z mod 2,y mod 2). Observe that f maps points in
S to points in the 2 x 2 square [0,2) x [0,2). Hence, the area of f(5) is less than or
equal to 4. We can show that is map is area preserving whenever it is injective since

Area(f(S))= Y Area(f(SN([2m,2m+2) x [2n,2n + 2))))

= Z Area(S N ([2m,2m + 2) x [2n,2n + 2))) = Area(5),

(m,n)€Z2

where the second equality is because f restricted to each [2m,2m + 2) x [2n, 2n + 2)
is just a translation.

But S has an area greater than 4 and f(S) has an area less than or equal to 4;
hence, f cannot be injective. So there exist two points p; and ps in S such that
f(p1) = f(p2). But then py = p; + (24,25) for some integers i and j not both zero.
Since S is centrally symmetric, the point —p; is also in S. Furthermore, since S
is convex, the line segment joining —p; and p, lies entirely in S. Therefore, the
midpoint of this segment

1

Spit ) = 5 (op o+ (26.2) = ()

lies in S. Since 7 and j are integers that are not both zero, it follows that S contains
a point of Z? other than (0, 0).




(a) Suppose a € C is a root of some nonzero polynomial in Q[z]. Write Q[«] to denote
the set {P(«) | P € Q[z]}. Show that for any § € Q[a] \ {0}, there exists v € Q[
such that fy = 1. (You may assume that Q[a] is a finite-dimensional Q-vector
space, a consequence of which is that there exists n € N such that for all v, ..., v, €
Q[a], there exist Aq,..., A\, € Q not all zero such that A\jv; + -+ + A0, = 0.)

Solution: (Victor Wang)

Let 5 € Q[a]\ {0}. We show that there exists v € Q[a] such that fy = 1. Since
Q[a] is a finite-dimensional Q-vector space, for some n € N there is a nontrivial
Q-linear relation between (', ..., 8" of the form \;3' + -+ + \,8" = 0 (note
each 3" € Q[a]). So 3 is the root of some nonzero polynomial in Q[x].
Therefore, there exists a nonzero polynomial @) € Q[z] of minimum degree
vanishing on . Since [ # 0, the constant term of () is not zero, or else § would
be a root of nonzero 1Q) € Q[z] of smaller degree. Let ¢ be the nonzero constant
term of Q. Then S = —é(@ — ¢) is a polynomial in Q[z]. Since 5 € Qla], it
follows that S(8) € Q[a]. Then since Q(5) = 0, taking v = S(5), we see that
By = —2(QB) — ) = 1,

(b) Let o € C be a root of the polynomial z* — 42? 4+ 2 € Q[z]. You may assume that
a and 1+ « + o? are nonzero. Write ™! and (1 4+ « + o?)™! as elements of Q[a].

Solution: (Victor Wang)

Since z* — 42% + 2 € Q[z] has a nonzero constant term and vanishes on «a, by
our solution to part (a), the inverse of a is —3(a® — 4a).

To compute the inverse of 1 + o + o, we will need a different approach since
it is difficult to find a polynomial in Q[z] vanishing 1 + a + a?. We will apply
the Euclidean (division) algorithm to polynomials in Q[z]. By the division
algorithm, z* — 422 + 2 = (2 — 2 — 4)(z* +  + 1) + (5z + 6). Again by the
division algorithm, 2 + z + 1 = (32 — 5) (52 + 6) + 31

So
1=§(w2+x+1)—§(éx—%) (52 +6)
:§ {1+<%x—%) ($2—:B—4)] (2 +x+1)
B D) ey




Evaluating the above expression at a, we deduce that

(1+oz+o[")*1—§ {1+<1a—l> (a2—a—4)]

31 5 25
1
= 3—1(5a3 —6a% — 19a + 29).

5. Let P(2) = aqz?+ -+ a1z +ag be a polynomial with complex coefficients. The reverse
of P is defined by
P*(2) = @pz + a2t + - +ag.

(a) Prove that

Solution: (Arvin Sahami)
Observe that

(b) Let m be a positive integer and let ¢(z) be a monic nonconstant polynomial with
complex coefficients. Suppose that all roots of ¢(z) lie inside or on the unit circle.
Prove that all roots of the polynomial

Q(z) = 2"q(2) + ¢"(2)

lie on the unit circle.

Solution: (Arvin Sahami)

Let {z;} be the roots of ¢. Then we can write ¢(x) = (¢ — 21)...(# — 2,) where
|z;] < 1. Taking the reverse of ¢ we get

7(2) = Zn@ _ ,n (% - zl) (% - zn> — on (1 —Zzz‘1> (1 —Zzz_n>

=1 —2zz) - (1—2z2z,).




Setting Q(z) = 0, we get

2Mq(z) = —q"(z2) = 2"(z—2z1)(z—2z) =—(1—22)...(1 —z2z,) (1)
= [2"(z—z1)...(z—z)| = |1 —251)...(1 — 22,)| (2)
Suppose z = z; for some 1 < ¢ < n. Then (1) implies that 1 — 2;z; = 0, which

means that |z| = |z = |z;| = L.
On the other hand, suppose that z # z;. By (2), observe that

1 —zz]  |1— 27|

m’_

2™ = |2 (3)

|z — 2] |2 — zn|

If |2| <1, then (1—]2]?)(1—]|z]?) > 0 for each 1 < i < n. But then |z|?|2]*—1 >
|2|? + |2;]?, which implies that

1—2z2=0-25)1-2%)> (z—2)(Z— %) = |z — z|*.

Hence, by (3), |z|™ > 1 so that |z] > 1. Since we assumed that |z| < 1, we see
that |z] = 1 as desired.

A similar argument shows that |z| = 1 when |z| > 1.




