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1. Let g : C → C, ω ∈ C, a ∈ C, ω3 = 1, and ω ̸= 1. Show that there is one and only one
function f : C → C such that

f(z) + f(ωz + a) = g(z), z ∈ C,

and find the function f .

Solution: (Joanna Weng)

Since ω3 = 1 and ω ̸= 1, it follows that ω2 + ω + 1 = ω3−1
ω−1

= 0.

Then substituting ωz+ a for z in a cyclic manner we obtain the following equations.

g(z) = f(z) + f(ωz + a). (1)

g(ωz + a) = f(ωz + a) + f(ω2z + ωa+ a). (2)

g(ω2z + ωa+ a) = f(ω2z + ωa+ a) + f(ω3z + ω2a+ ωa+ a)

= f(ω2z + ωa+ a) + f(z). (3)

Adding (1), (2), and (3), we have

f(z) + f(ωz + a) + f(ω2z + ωa+ a) =
1

2

[
g(z) + g(ωz + a) + g(ω2z + ωa+ a)

]
.

Then subtracting (2) from this gives

f(z) =
1

2

[
g(z)− g(ωz + a) + g(ω2z + ωa+ a)

]
.

2. Let f satisfy the functional equation

f(x)2 = 1 + xf(x+ 1)

and the inequalities
x+ 1

2
≤ f(x) ≤ 2(x+ 1)

for all x ≥ 1. Prove that f(x) = x+ 1.

Solution: (Young Lin)

Substituting x+ 1 for x in the given inequalities we obtain

x+ 2

2
≤ f(x) ≤ 2(x+ 2). (1)
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Now given that f(x)2 = 1 + xf(x+ 1), it follows that

1

2
+ xf(x+ 1) < f(x)2 < 2 + xf(x+ 1). (2)

Putting (1) and (2) together, we obtain

(x+ 1)2

2
=

1

2
+ x

(
x+ 2

2

)
< f(x)2 < 2 + x(2(x+ 2)) = 2(x+ 1)2,

which by taking square roots gives

2−1/2(x+ 1) < f(x) < 21/2(x+ 1).

Observe that the bound on f has improved. So applying the same procedure n times
we obtain

2−1/2n(x+ 1) < f(x) < 21/2
n

(x+ 1),

which in the limit as n → ∞ gives

x+ 1 ≤ f(x) ≤ x+ 1.

Hence, f(x) = x+ 1 as desired.

3. Let f(x) = x2 + 2022x+ 1. Define f ◦n = f ◦ f ◦ . . . ◦ f (n times). Prove that f ◦n has at
least two real roots.

Solution: (Oakley Edens)

It is clear that f ◦n(1) > 0 and f ◦n(−2022) > 0 for all n. Next, let α be the unique
negative root of f(x)−x = x2+2021x+1 = 0, obtained from the quadratic formula.
Then f(α) = α and it follows that f ◦n(α) = α < 0. By the intermediate value
theorem, f ◦n has a root in the intervals (−2022, α) and (α, 1). Thus f ◦n has at least
two real roots.

4. For every n ≥ 0, find all polynomials f(x) ∈ Z[x] such that for all x ∈ C \ {0},

f

(
x+

1

x

)
= xn +

1

xn
.

Your solution may be written in the form of a recurrence.
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Solution: (Oakley Edens)

Suppose that for a given n, there exists a polynomial fn(x) satisfying the given
equality. Define gn(x) =

1
2
fn(2x).

Note that gn(x) satisfies the functional equation

gn

(
x+ x−1

2

)
=

xn + x−n

2
.

Next, we substitute x = eiθ. Using Euler’s Identities, the equation becomes

gn(cos θ) = cos(nθ).

Since cos(nθ) is a polynomial in cos θ, we can guarantee that a unique solution gn
will exist for all n. This implies that a unique solution fn exists for all n. To describe
these solutions we begin by using angle sum formulas to obtain

cos(nθ) = cos((n− 1)θ) cos θ − sin((n− 1)θ) sin(θ)

and
cos((n− 2)θ) = cos((n− 1)θ) cos θ + sin((n− 1)θ) sin θ.

Adding these two equalities gives

cos(nθ) = 2x cos((n− 1)θ) cos θ − cos((n− 2)θ).

Using the functional equation for gn this implies that gn satisfies the recurrence

gn(x) = 2xgn−1(x)− gn−2(x)

with g0(x) = 1 and g1(x) = x. Rewriting this in terms of fn(x) (and after some
manipulation) we obtain

fn(x) = xfn−1(x)− fn−2(x)

with f0(x) = 2 and f1(x) = x.

5. Find all functions f : R → R such that

f(f(x)2 + f(y)) = xf(x) + y

for all x, y ∈ R.
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Solution:

Begin by observing that f(x) = ±x are solutions. Next, substituting 0 for x and y,
we see that

f(f(0)2 + f(0)) = 0.

Hence, there is some u ∈ R such that f(u) = 0. Now substituting x = u, we find
that

f(f(y)) = y for all y ∈ R.

So f is an involution and thus a bijection.

Since f is surjective, for each x ∈ R there is a t ∈ R such that f(t) = x. So
substituting f(t) for x we get

f(f(f(t))2 + f(y)) = f(t)f(f(t)) + y =⇒ f(t2 + f(y)) = tf(t) + y.

But f(f(t)2 + f(y)) = tf(t) + y by the given equation, and since f is injective, it
follows that

f(t)2 + f(y) = t2 + f(y) =⇒ f(t) = ±t.

Finally, we verify that either f(t) = t for all t ∈ R or f(t) = −t for all t ∈ R. Suppose
f(a) = a and f(b) = −b for a, b ∈ R. It is enough to show that one of a or b is zero.
Observe that

f(a2 + f(y)) = a2 + y and f(b2 + f(y)) = −b2 + y for all y ∈ R.

But f(0) = 0, which means that f(a2) = a2 and f(b2) = −b2. Then

f(a2 − b2) = f(a2 + f(b2)) = a2 − b2 = f(b2 + f(a2)) = f(b2 + a2),

and since f is injective we have that

a2 − b2 = a2 + b2 =⇒ b = 0.

Hence, f(x) = ±x are the only solutions.
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