UBC Math Circle 2022 Problem Set 4

- 1. A composition of n is a sequence $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$ of positive integers such that $\sum \alpha_i = n$. Prove that
 - (a) The number of compositions of n is 2^{n-1} .
 - (b) The total number of parts of all compositions of n is equal to $(n+1)2^{n-2}$.
 - (c) For $n \ge 2$, the number of compositions of n with an even number of even parts is equal to 2^{n-2} .
- 2. On some planet, there are 2^N countries $(N \ge 4)$. Each country has a flag N units wide and one unit high composed of N fields of size 1×1 , each field being either yellow or blue. No two countries have the same flag. We say that a set of N flags is *diverse* if these flags can be arranged into an $N \times N$ square so that all N fields on its main diagonal will have the same color. Determine the smallest positive integer M such that among any M distinct flags, there exist N flags forming a diverse set.
- 3. N cells are chosen on a rectangular grid. Let a_i is number of chosen cells in *i*-th row, b_j is number of chosen cells in *j*-th column. Prove that

$$\prod_{i} a_i! \cdot \prod_{j} b_j! \le N!$$

- 4. You are given an unbiased fair coin C. Can you use C to simulate a biased coin C' which produces heads with probability p such that on average C is flipped twice? (i.e. either come up with a procedure which simulates C' and flips C twice on average or prove that no such procedure exists).
- 5. The Fibonacci numbers may be defined by the recurrence

$$F_0 = 0, F_1 = 1,$$

and

$$F_n = F_{n-1} + F_{n-2}$$

for n > 1. Show that

$$F_{n+m} = F_{n-1}F_m + F_nF_{m+1}$$

for all $n \ge 1$ and $m \ge 0$. (Possible solution hint: observe that for n > 1, the number of possible ways of tiling a $1 \times (n - 1)$ rectangle with monominos and dominos is equal to F_{n} .)