UBC Math Circle 2022 Problem Set 5

1. Find all solutions to the equation £ +V + F = G + 2 where E,V, F,G are positive
integers and F,V, F all divide G.

Solution: Since E,V, F all divide G, we can write p = G/E, q = G/V,r = G/F

and study the equation
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where p, ¢, are positive integers.

Suppose without loss of generality that p < ¢ < r. Then p < 2 since otherwise

1 1 1 2
- +t-+-<1<Fz+1L
p q T G

Case 1: Suppose p = 1. This forces ¢ = G = r.
Case 2: Suppose p = 2. Then é + % = % + % It must be that ¢ < 3 for otherwise
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Subcase 1: Suppose ¢ = 2. Then r = G/2.

Subcase 2: Suppose ¢ = 3. Then G = 2. Since r > 3, r can be 3, 4, or 5.

6—r
Putting these together we see that
l1+14n=2+n (natural n)
n+n+2=2+2n (natural n)

4+44+6=2+12
6+8+12=2+4+24
12+20+30 =2+60

are solutions. In the ADE classification, the above solutions are labelled by A, _1,
Dn+27 and E67 E77 ES'

2. A population on a graph is an assignment of positive integers to each vertex. A perfect
population has the property that the population of each vertex is exactly 1/2 of the sum
of the neighbouring populations. Find all perfectly populated (finite) graphs.

Solution: Below are the six possible “primitive” (connected nontrivial) perfectly
populated graphs.

Solutions edited by Josh Gomes and Victor Wang.
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Below is an argument to recover the above solutions.

Let G be a (connected nontrivial) perfectly populated graph. We leave it as an
exercise to show that:

(i) If G is not a tree, then G is a cycle.

)
(ii) G cannot be a path.
(iii) deg(v) < 4 for all vertices v of G.
)

(iv) If G contains a vertex of degree 4, then G is the star graph Sj.

From (i) the only possible perfectly populated graph that is not a tree is a cycle,
which gives our first solution. From (iv) we can verify that Sy is indeed a solution,
which gives our second solution. And so by (i)-(iii) the only solutions remaining are
trees that must have a vertex of degree 3 and no larger.

Suppose G has as a vertex v of degree 3 with integer label a. Let a — dy, a — ds, and
a — dz be the integer labels of the neighbours of v where dy, ds, d3 are nonnegative.
It is not hard to verify that the labels of the vertices in the paths leading to v form
a (finite) arithmetic progression with differences di, ds, d3, respectively. So if G has
2 degree 3 vertices, then the labels of the vertices in the path joining them must be




constant. Since it is possible for only one of dy, ds, d3 to be zero, if G has 2 degree
3 vertices then GG has exactly 2 degree 3 vertices. Hence, we can recover the only
solution with 2 degree 3 vertices.

All remaining solutions must now have exactly 1 degree 3 vertex, which means
dq,ds, d3 are nonzero. Now if d; is nonzero, then d; divides a for ¢ = 1,2,3. This
is because each of the three paths leading away from v ends at a leaf. Then since
di + dy + d3 = a, we can write p = a/d;, ¢ = a/ds, r = a/d3 and study the equation
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where p, ¢, r are positive integers. Suppose without loss of generality that p < ¢ < r.
Then it is not hard to see that 2 < p < 3.

Case 1: Suppose p = 2. Then either ¢ =4 = r, or ¢ = 3 and r = 6. This gives
solutions dy = a/2, ds = a/4, d3 = a/4, or dy = a/2, dy = a/3, d3 = a/6.

Case 2: Suppose p = 3. Then ¢ = 3 = r. This gives the solution d; = a/3, dy = a/3,
d3 = (1,/3

We see that the above cases give us the remaining three solutions.

3. Let n be a positive odd integer. There are n computers and exactly one cable joining
each pair of computers. You are to colour the computers and cables such that no two
computers have the same colour, no two cables joined to a common computer have the
same colour, and no computer is assigned the same colour as any cable joined to it.
Prove that this can be done using n colours. What about when n is even?

Solution: Arrange the n computers into a regular n-gon. Note that the cables,
drawn as straight lines, can be partitioned into n sets of parallel lines (and no two
parallel lines connecting vertices of the regular n-gon will be connected to the same
vertex). So we can assign one colour to each set of parallel lines. For each colour, the
cables given that colour will pair together vertices, so since n is odd there is some
vertex left over, which we will give the same colour. This completes the solutiion.

4. Two pyramids with common base A;A;A3A4A5AgA7 and vertices B and C' are given.
The edges BA;,CA;(i = 1,...,7), the diagonals of the common base and the segment
BC are coloured in either red or blue. Prove that there exists a triangle whose sides are
colored in one and the same color.



Solution: (Joanna Weng)
Without loss of generality, suppose segment BC' is red. We consider three cases.

Case 1: At least three of the edges BA; are red.

Let the three red edges be BA,, BAs, and BA;. At least one of the sides of the
triangle A,A,A;, say A, A,, is a diagonal of the base and is colored. If A, A, is red,
then ABA, A, is all red. Moreover, if C'A, or C'A; is red, then ABC A, or ABCA,
is all red. Thus all of A,A,, CA,,C'A; must be blue to avoid an all-red triangle; but
this makes A,A,C an all-blue triangle. Thus we must always have a unicoloured
triangle in this case.

Case 2: Exactly two of the edges BA; are red.

Let the two edges be BA, and BA;, and consider two subcases. If A, A, is a diagonal,
we can reason as Case I. Otherwise, suppose WLOG that BA; is blue for ¢ # 1,2.
Consider the three base vertices As, As, A7. Since BAs, BAs, BA; are all blue, the
diagonals A3 As, As A7, A7 A3 must all be red to avoid an all-blue triangle with B. This
forces AN A3A5A7 to be all red. Thus we must always have a unicoloured triangle in
this case.

Case 3: Exactly one of the edges BA; is red.
Suppose WLOG that BA; is red. Reasoning as in Case II, AA3A5A; must be all
red.

There is a unicolored triangle in every case.

5. For k € Z>y, a proper k-colouring of a graph G with vertex set V' and edge set £ is a
map k: V — {1,...,k} so that for all edges uv € E, k(u) # k(v). Let xc(k) denote the
number of proper k-colourings of G.

(a) Show that g (k) is a polynomial in k. x¢ is known as the chromatic polynomial.

(b) What are the chromatic polynomials of the path and complete graphs on n vertices?
(The path P, has n vertices labelled 1,...,n with an edge between each pair of
vertices labelled ¢ and 7 + 1. The complete graph K, has n vertices and an edge
between every pair of distinct vertices.)

(¢) An acyclic orientation of G is an assignment of a direction to each edge of G so
that there are no directed cycles (i.e. there is no way to go from a vertex to itself
by following directed edges). Show that the number of acyclic orientations of G is

given by |xa(—1)].

Solution: (Victor Wang)

(a) Note that x(k) satisfies a deletion-contraction relation: for any edge e, xg(k) =
Xa—e(k) = Xa/e(k), where G — e is the graph with e removed, and G/e is the




graph obtained by formally identifying the endpoints of e in G — e. This is
because in a proper k-colouring of G' — e, either the endpoints of e are given
different colours, which corresponds bijectively to the proper k-colourings of G,
or the endpoints of e are given the same colour, which corresponds bijectively
to the proper k-colourings of G/e.

We proceed by induction on the number of edges. If G has n vertices and
no edges, then the vertices may be coloured in any way, so xg(k) = k" is a
polynomial. Otherwise, there is some edge e, and G — e, G /e have strictly fewer
edges. So xa(k) = Xa—e(k) — XG/e(k) is a polynomial.

If we try colouring the vertices of the path in order, there are k possible colours
for the first vertex, and k£ — 1 possible colours for each successive vertex (as the
colour chosen just has to be distinct from the colour of its previous neighbour).

So xp, (k) = k(k — 1)1

If we try colouring the vertices of the complete graph in any order, there are
k possible colours for the first vertex, k — 1 for the second, k — 2 for the third,
etc. (as the colour chosen for a vertex has to be distinct from all previously
chosen colours). So xg, (k) =k(k—1)---(k—n+1).

(This result appears in Richard Stanley’s 1973 paper “Acyclic orientations of
graphs”.)

We will show by induction on the number of edges m of G that the number
of acyclic orientations of a graph is (—1)"xg(—1), where n is the number of
vertices. For the base case when m = 0, this is clear since xg(k) = k™ where
n is the number of vertices of G, and the number of acyclic orientations is just
(—1)™- (—=1)" =1 (the trivial orientation).

For the inductive step, note that the number of acyclic orientations of G is equal
to the sum of the number of acyclic orientations of G —e and G//e where e is an
edge of G connecting vertices u and v. To see this, note acyclic orientations of
G — e with a directed path from w to v are in bijection with acyclic orientations
of G with a directed path from u to v (not including e) and e oriented from u
to v. Similarly, acyclic orientations of G — e with a directed path from v to u
are in bijection with acyclic orientations of G with a directed path from v to u
(not including e) and e oriented from v to u. And for every acyclic orientation
of G with no directed path from v to v and no directed path from v to u, there
are two corresponding acyclic orientations of (G, and one corresponding acyclic
orientation of G/e.

So by the inductive hypothesis, the number of acyclic orientations of G is
(=1)"XG-e(=1) + (=1)""xa/e(—1) = (=1)"xc(-1).




