UBC Math Circle 2022 Problem Set 6

1. (a) Prove that for any nonempty subsets A and B of \mathbb{R} we have

$$|A + B| \ge |A| + |B| - 1,$$

where $A + B := \{a + b \mid a \in A, b \in B\}.$

(b) Prove that for any prime p and nonempty subsets A and B of $\mathbb{Z}/p\mathbb{Z}$ we have

$$|A + B| \ge \min\{p, |A| + |B| - 1\},\$$

where $A + B := \{a + b \pmod{p} \mid a \in A, b \in B\}.$

(Hint: You may use the fact that Combinatorial Nullstellensatz holds over $\mathbb{Z}/p\mathbb{Z}$.)

Solution:

(a) Note |A + B| = |A' + B'| where $A' = \{a - \max_{x \in A} x : a \in A\}$ and $B' = \{b - \min_{y \in B} y : b \in B\}$. Note $0 \in A', B'$ and every element of A' is nonpositive, while every element of B' is nonnegative. Hence $A' \cup B' \subset A' + B'$, where $|A' \cup B'| \ge |A'| + |B'| - 1 = |A| + |B| - 1$, since $A' \cap B' = \{0\}$.

(b) Let $A, B \subset \mathbb{Z}/p\mathbb{Z}$ be nonempty. We will show $|A+B| \ge \min\{p, |A|+|B|-1\}$.

When |A| + |B| > p, then for all $c \in \mathbb{Z}/p\mathbb{Z}$, the intersection of A and $\{c\} - B$ is nontrivial by the pigeonhole principle, so every $c \in \mathbb{Z}/p\mathbb{Z}$ is in the sumset A + B, which shows the result in that case.

It remains to show the case when $|A|+|B| \leq p$. Let $f(x,y) = \prod_{c \in A+B} (x+y-c)$, $g(x) = \prod_{a \in A} (x-a)$, and $h(y) = \prod_{b \in B} (y-b)$. Suppose, for a contradiction, that $\deg(f) = |A+B| \leq |A|+|B|-2$.

Since f(x, y) vanishes on $A \times B$, by combinatorial Nullstellensatz we have $f(x, y) = k(x, y)g(x) + \ell(x, y)h(y)$ for some polynomials

 $k(x,y), \ell(x,y) \in \mathbb{Z}/p\mathbb{Z}[x,y]$ satisfying $\deg(k) \le |A+B| - \deg(g)$ and $\deg(\ell) \le |A+B| - \deg(h)$.

Note the coefficient of $x^{|A|-1}y^{|A+B|-|A|+1}$ is $\binom{|A+B|}{|A|-1}$. Since p is prime and $|A + B| \le |A| + |B| - 2 < p$, the coefficient is nonzero.

Since the degree of $x^{|A|-1}y^{|A+B|-|A|+1}$ is |A+B| and $\deg(k) + \deg(g) \leq |A+B|$, any occurrence of the monomial $x^{|A|-1}y^{|A+B|-|A|+1}$ in k(x,y)g(x) can only arise from multiplying highest degree terms from each of k(x,y) and g(x). The unique highest degree term in g(x) is $x^{|A|}$, which has degree in x greater than the degree in x of $x^{|A|-1}y^{|A+B|-|A|+1}$, so the coefficient of $x^{|A|-1}y^{|A+B|-|A|+1}$ in k(x,y)g(x) is zero. Similarly, the coefficient of $x^{|A|-1}y^{|A+B|-|A|+1}$ in $\ell(x,y)h(y)$ is zero, since $y^{|B|}$ is the unique highest degree term in h(y) and |B| > |A+B| - |A| + 1, by assumption. But then this would imply that the coefficient of $x^{|A|-1} y^{|A+B|-|A|+1}$ in f(x, y).

But then this would imply that the coefficient of $x^{|A|-1}y^{|A+B|-|A|+1}$ in f(x,y) is zero, a contradiction.

So in all cases we have $|A + B| \ge \min\{p, |A| + |B| - 1\}$.

2. Prove that for any partition of the positive integers into a finite number of parts, one of the parts contains three integers x, y, z with x + y = z.

(Hint: It may be helpful to know Ramsey's theorem, which may be stated as follows. For any positive integer k, there is a positive integer n such that any gathering of n people contains either k mutual friends or k mutual strangers.)

Solution: Note that the given version of Ramsey's theorem can be used to prove a "multicoloured" analogue. Namely, for any positive integers k, l, there exists a positive integer n such that if all edges of the complete graph K_n are coloured one of l colours, then there exists k vertices such that all edges between them are the same colour. (This can be proven by induction on l, first applying the 2-colour version with k sufficiently large, then the version for l - 1 colours on the monochromatic K_k .)

Let l be the number of parts and k = 3, and n be so that the statement of the multicoloured Ramsey's theorem is satisfied. Consider the complete graph on vertices 1 to n, where the edge from i < j is given the "colour" corresponding to the part where j - i lives. Then, there is a monochromatic triangle, that is, there exists $1 \le i < j < k \le n$ such that j - i, k - j, k - i all are in the same part of the partition. But (j - i) + (k - j) = (k - i), so this proves the problem statement.

3. For a prime p and a given integer n let $\nu_p(n)$ denote the exponent of p in the prime factorisation of n!. Given $d \in \mathbb{N}$ and $\{p_1, p_2, \ldots, p_k\}$ a set of k primes, show that there are infinitely many positive integers n such that $d \mid \nu_{p_i}(n)$ for all $1 \leq i \leq k$.

Solution: (Neo Huang)

For a positive integer x, let $u_p(x)$ denote the exponent of p in the factorization of x. We now note two properties of ν_p :

$$\nu_p(x) = \sum_{r=1}^x u_p(r)$$

$$\nu_p(x+y) = \nu_p(x) + \nu_p(y) \text{ when } u_p(x) \neq u_p(y).$$

Since $u_p(nm) = u_p(n) + u_p(m)$ for any integers n and m, the first property follows because $\nu_p(x) = u_p(x!)$. For the second property, we have that $u_p(x + y) = \min\{u_p(x), u_p(y)\}$ if $u_p(x) \neq u_p(y)$. In particular, assuming without loss of generality that $u_p(x) > u_p(y)$,

$$\nu_p(x+y) = \sum_{r=1}^{x+y} u_p(r) = \sum_{r=1}^{x} u_p(r) + \sum_{r=x+1}^{x+y} u_p(r)$$
$$= \nu_p(x) + \sum_{r=1}^{y} u_p(r) = \nu_p(x) + \nu_p(y).$$

Thus, for any integer x, if there exists some integer y such that $\nu_p(y) \equiv (d - 1)\nu_p(x) \mod d$ for all $p \in \{p_1, \ldots, p_k\}$, then $d \mid \nu_{p_i}(x) + \nu_{p_i}(y) = \nu_{p_i}(x+y)$ for all $1 \leq i \leq k$. We prove there are an infinite number of integers x with this property. Observe that the set

$$S = \{(\nu_{p_1}(n), \dots, \nu_{p_k}(n)) \bmod d \mid n \in \mathbb{N}\}$$

is finite, which means that we can choose a finite set of integers $Y = \{y_1, \ldots, y_l\}$ such that for any $(t_1, \ldots, t_k) \in S$,

$$(t_1,\ldots,t_k) \equiv (\nu_{p_1}(y),\ldots,\nu_{p_k}(y)) \mod d$$

for some $y \in Y$. Letting $K = \prod_{i=1}^{k} p_i^{a_i}$ where $p_i^{a_i} > \max\{y_1, \ldots, y_l\}$, and z any positive integer, it follows that Kz is an integer where $u_{p_i}(Kz) > u_{p_i}(y)$ for all $y \in Y$. We have that

$$((\nu_{p_1}(Kz), \dots, \nu_{p_k}(Kz)) \equiv (\nu_{p_1}(y_{j_1}), \dots, \nu_{p_k}(y_{j_1})) \mod d$$

for some $y_{j_1} \in Y$. Thus,

$$(\nu_{p_1}(Kz + y_{j_1}), \dots, \nu_{p_k}(Kz + y_{j_1})) \equiv (2\nu_{p_1}(Kz), \dots, 2\nu_{p_k}(Kz))$$

$$\equiv (\nu_{p_1}(y_{j_2}), \dots, \nu_{p_k}(y_{j_2})) \mod d$$

for some $y_{j_2} \in Y$. Continuing the process,

$$(\nu_{p_1}(Kz+y_{j_2}),\ldots,\nu_{p_k}(Kz+y_{j_2})) \equiv (3\nu_{p_1}(Kz),\ldots,3\nu_{p_k}(Kz)) \mod d.$$

By induction, there is some $y \in Y$ such that $\nu_{p_i}(Kz + y) \equiv d\nu_{p_i}(Kz) \equiv 0 \mod d$ for $1 \leq i \leq k$. Since z was an arbitrary positive integer, there are an infinite number of integers Kz that satisfy the conditions of the problem.

4. An equilateral triangle Δ of side length L > 0 is given. Suppose that n equilateral

triangles with side length 1 and with non-overlapping interiors are drawn inside Δ , such that each unit equilateral triangle has sides parallel to Δ , but with opposite orientation. (An example with n = 2 is drawn below.)

Prove that

Solution: (Joanna Weng)

The greatest number of small triangles of the correct orientation to pack into \triangle is

 $n \le \frac{2}{3}L^2.$

$$\frac{\lfloor L \rfloor (\lfloor L \rfloor - 1)}{2}$$

the triangle number. This bound gives

$$n \le \frac{\lfloor L \rfloor (\lfloor L \rfloor - 1)}{2} < \frac{2}{3}L^2.$$

5. We say that a finite set S of points in the plane is balanced if, for any two different points A and B in S, there is a point C in S such that AC = BC. We say that S is centre-free if for any three different points A, B and C in S, there is no points P in S such that PA = PB = PC.

(a) Show that for all integers $n \ge 3$, there exists a balanced set consisting of n points.

(b) Determine all integers $n \ge 3$ for which there exists a balanced centre-free set consisting of n points.

Solution: (Neo Huang)

(a) If n is odd, the regular n-gon works. Essentially, this is because if we choose any two distinct vertices A and B on the n-gon, one of the paths between A and B will contain and even number of vertices and the other an odd number. Choosing the "middle" vertex in the path with an odd number of vertices yields a point equidistant from A and B.

point P must be chosen as a balancing point at least (n-1)/2 times. Because n is even, the point P is actually chosen n/2 times. Since these n/2 pairs of points come from the remaining n-1 points other than P, at least one point A appears in two of the pairs, $\{A, B\}$ and $\{A, C\}$. But then we have that PA = PB = PC.