UBC Math Circle 2022 Problem Set 7

1. Given two triangles ΔABC and $\Delta A'B'C'$ with the same centroid, prove that one can construct a triangle with sides equal to the segments AA', BB', and CC'.

Solution: (Young Lin)

We first realize that if O is the centroid of some triangle ABC, then

$$\vec{OA} + \vec{OB} + \vec{OC} = 0$$

This is be easily shown (for example find a coordinate system, put one side of the triangle on the x-axis and do some algebraic manipulations.)

We can also write the condition of three sides forming some triangle ABC by:

$$\vec{AB} + \vec{BC} + \vec{CA} = 0$$

The problem asks to form a triangle by AA', BB', CC' of arbitrary triangles ABC and A'B'C', it suffices to show

$$\vec{AA'} + \vec{BB'} + \vec{CC'} = 0$$

- $\vec{OA} + \vec{OA'} - \vec{OB} + \vec{OB'} - \vec{OC} + \vec{OC'} = 0$ (1)

But since we know O is common centroid,

$$\vec{OA} + \vec{OB} + \vec{OC} = \vec{OA'} + \vec{OB'} + \vec{OC'} = 0$$

So we've showed (1), what we want to show. We are done.

2. Let M be the midpoint of the side BC in ΔABC . Let E and F be the tangent points of the incircle and the sides CA and AB, respectively. Let the angle bisectors of $\angle B$ and $\angle C$ intersect the line EF at X and Y, respectively. Prove that ΔMXY is equilateral if and only if $\angle A = 60^{\circ}$.

Solution: (Joanna Weng)

From $\angle BDC = 180^{\circ} - \frac{\angle B}{2} - \frac{C}{2}$, we have $\angle BDY = \frac{\angle B}{2} + \frac{C}{2} = 90^{\circ} - \frac{\angle A}{2}$. From isoceles $\triangle AEF$, we have $\angle AFE = 90^{\circ} - \frac{\angle A}{2}$. Thus, $\angle BDY = \angle FAD$. If Y lies inside segment EF, we directly conclude that BDYF is cyclic by external angles; if Y lies outside segment EF, we have $\angle AFE = \angle BFY = \angle BDY$, so BDFY is cyclic by corresponding angles. Then, $\angle BYD = \angle BFD = 90^{\circ}$. (This result is called the intouch chord theorem!)

Similarly, we have $\angle CXD = 90^{\circ}$.

In right $\triangle BYC$, M is the midpoint of the hypotenuse. Thus, $\angle MYC = \angle MCY = \angle YCA$, so $MY \parallel AC$. Similarly, $MX \parallel AB$.

We have $\triangle MYX \sim \triangle AFE$ by AA. With AF = AE being tangents from a common point, $\triangle AFE$ is isoceles and equilateral iff $\angle A = 60^{\circ}$; we conclude likewise for $\triangle MXY$.

3. Inside of convex quadrilateral ABCD is a point M such that $\angle AMB = \angle ADM + \angle BCM$ and $\angle AMD = \angle ABM + \angle DCM$. Prove that

$$AM \cdot CM + BM \cdot DM \ge \sqrt{AB \cdot BC \cdot CD \cdot DA}.$$

Solution: (Arvin Sahami)

Perform the M inversion, the quadrilateral will be mapped to a parallelogram. In the new diagram, we should show that $MB.MD + MA.MC \ge AB.BC$; Assume that l, d are lines parallel to BC, AB respectively ,passing through M. l cuts AB, CD at X, Z and d cuts BC, AD at Y, T. Let $\alpha = \cos(\angle MTD)$ we will now compute all the lengths:

(Assume that MX = x, MY = y, MZ = z, MT = t.)

We need to show prove the following inequality:

$$\sqrt{x^2 + y^2 - 2xy\alpha} \cdot \sqrt{z^2 + t^2 - 2zt\alpha} + \sqrt{x^2 + t^2 + 2xt\alpha} \cdot \sqrt{z^2 + y^2 + 2yz\alpha}$$
$$\geq (x+z).(y+t)$$

There are non-negative real numbers a, b, a + b = 1 such that the above inequality could be represented as

$$\sqrt{a(x+y)^{2} + b(x-y)^{2}} \cdot \sqrt{a(z+t)^{2} + b(z-t)^{2}} + \sqrt{b(x+t)^{2} + a(x-t)^{2}} \cdot \sqrt{b(y+z)^{2} + a(y-z)^{2}} \ge (x+z).(y+t)$$

We can prove this by using Cauchy-Schwarz inequality.

4. The incircle of triangle $\triangle ABC$ with center I is tangent to the sides AB and BC at points C_1 and A_1 , respectively. Let M be the midpoint of AC, and N be the midpoint of the arc ABC in the circumcircle of $\triangle ABC$. Let P be the projection of M over C_1A_1 ; show that I, P, N are collinear.

Solution: (Arvin Sahami)

Let T be the middle of the arc CA such that T and B lie on different sides of Ac. Let P be the intersection of IN and A_1C_1 . Also let K be the intersection of IB and A_1C_1 .

Observe that as all the points N, M, T lie on the perpendicular bisector of AC, we have $\angle AMN = \angle AMt = 90$

Furthermore, note that

$$\angle TAm = \angle TBC = \angle B/2, \angle TNA = \angle TBA = \angle B/2$$

Furthermore, it's easy to see that BI is the perpendicular bisector of A_1C_1 hence $BI \perp A_1C_1, \ \angle IBC = \ \angle B/2$ and $\ \angle IC_1B = 90$. Now, since $\ \angle ANT = \ \angle C_1BI = \ \angle B/2$ and $\ \angle IC_1B = \ \angle TAN = 90$, we get that $\ \triangle IC_1B \sim \ \triangle TAN$. Since $Am \perp TN$ and $IB \perp A_1C_1$, using the similarity obtained above, we get that $\frac{BK}{KI} = \frac{NM}{MT}$. Now, since $\ \angle NBT = 180 - \ \angle NAT = 180 - 90 = 90$, and we also have $\ \angle C_1KB = 90$, we have $BN \parallel KC_1$. This implies $\frac{BK}{KI} = \frac{NP}{PI}$ Therefore we obtain $\frac{NP}{PI} = \frac{NM}{MT}$, hence $TI \parallel MP$. Now, since $\ \angle B/2 = \ \angle ABI = \ \ \angle ABT$, we have that B, I, T are collinear, and hence $BI \parallel MP$. Now since BI is the perpendicular bisector of A_1C_1 and hence $BI \perp A_1C_1$, we obtain $MP \perp A_1C_1$ as desired.

5. The incircle of triangle $\triangle ABC$ with center I has points of tangency D, E, and F. Let M be the foot of the perpendicular from D to EF, and let P be on DM such that DP = MP. If H is the orthocenter of BIC, prove that PH bisects EF.

Solution: (Joanna Weng)

Let CI intersect BH at G so that $\angle BGC = 90^{\circ}$ by definition of the orthocenter. Let BI intersect EF at Q. Let HI intersect EF at K. Let J be midpoint of EF. By Menelaus theorem for $\triangle DMK$ and points P, J, H it suffices to show that

$$\frac{PM}{PN} \cdot \frac{HD}{HK} \cdot \frac{JK}{JM} = 1 \Longleftrightarrow \frac{HD}{HK} = \frac{JM}{JK}. \ (*)$$

From AF = AE we get $IJ \perp EF$, so $JI \parallel DM$. Therefore

$$\frac{JM}{JK} = \frac{ID}{IK}.$$

We rewrite the relation (*) as

$$\frac{HD}{HK} = \frac{ID}{IK}.$$

This is equivalent to showing that (D, I, K, H) is harmonical. Since $\triangle QGD$ is the orthic triangle of $\triangle HBC$, GI bisects $\angle DGK$. Since $\angle IGH = 90^{\circ}$, GH is exterior angle bisector of $\angle DGK$ and the result follows.

