
UBC Math Circle 2022 Problem Set 8

1. Three numbers are chosen at random between 0 and 1. What is the probability that the
difference between the greatest and the least is less than 1/3?

Solution: (Joanna Weng)

We approach this problem geometrically by observing that the desired probability is
equal to the ratio of the volume in which every point satisfies the condition to the
total possible volume.

Since the three numbers are not ordered, we can always pick out the smallest and for
instance plot it on the z-axis. Then, the total possible region is (not the unit cube!)
a square pyramid with unit square base in the xy-plane and volume 1/3. The points
(x, y, z) that satisfy the condition also satisfy x− z < 1

3
and y − z < 1

3
.

For z > 2
3
, all (x, y, z) in the possible region satisfy the condition. The volume of this

part is therefore 1
3
·
(
1
3

)3
= 1

81
. On the other hand, for z < 2

3
, we see that (x, y, z) in

the possible region satisfy the condition if and only if z ≤ x, y ≤ z+1/3. So at each

z-plane section, the possible area equals
(
1
3

)2
. The volume of this part is therefore

2
3
·
(
1
3

)2
= 2

27
. Hence, the total volume in which every point satisfies the condition is

1

81
+

2

27
=

7

81
.

Thus, our ratio is
7
81
1
3

=
7

27
.

2. Find the probability such that when a polynomial in Z/2027Z[x] having degree at most
2026 is chosen uniformly at random,

x2027 − x|P k(x)− x ⇐⇒ 2021|k.

Solution: (Oakley Edens)

Let p = 2027 and let f : Z/(p) → Z/(p) be an arbitrary function. Since p is
prime, by Fermat’s little theorem, the polynomial fa(x) = f(a)(1 − (x − a)2026)
of degree 2026 is 0 for all x ̸= a and is f(a) at x = a. It follows that f(x) =∑

a∈Z/(p) fa(x). Thus every function f is also a polynomial of degree at most 2026.
Next, suppose f and g are polynomial functions of degree at most 2026 such that
f(a) = g(a) for all a ∈ Z/(p). Suppose f − g ̸= 0. Since Z/(p) is a field, f − g
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has at most deg(f − g) roots and it follows that deg(f − g) ≥ 2027 which is a
contradiction. Thus f = g and every polynomial of degree at most 2026 is a unique
function from Z/(p) to itself. Thus choosing a random polynomial P (x) of degree
at most 2026 is equivalent to choosing a random function f : Z/(p) → Z/(p). The
condition that x2027 − x |P k(x) − x is equivalent to P k(x) = x for all x ∈ Z/(p).
This condition is preserved when we work with functions rather than polynomials.
Hence let f be a function satisfying the desired property and define ordf (z) be the
minimal k such that fk(z) = z. The condition then implies that ordf (z) exists and
lcmz∈Z/(p)(ordf (z)) = 43 · 47. Hence ordf (z) ∈ {1, 43, 47, 2021} or equivalently that
every cycle z → f(z) → . . . → fk(z) = z. Has z ∈ {1, 43, 47, 2021}. Next we
work by cases. Note that if we have an m-cycle, there are (m − 1)! ways to orient
it. Suppose there are a, b, c, d cycles of length 1, 43, 47, 2021 respectively. We have
that a + 43b + 47c + 2021d = 2027. If d = 1 then b = c = 0 and a = 6. There
are then

(
2027
6

)
(2020)! such functions. Next, suppose d = 0. The number of ways

to orient n cycles of length m is (nm)!
n!(m!)n

((m − 1)!)n = (nm)!
n!mn . Then the number of

functions for any given values of a, b, c is 2027!
a!(43b)!(47c)!

(43b)!
b!43b

(47c)!
c!47c

= 2027!
a!b!c!43b47c

. Hence for

d = 0 there are
∑

a+43b+47c=2027
2027!

a!b!c!43b47c
functions satisfying the desired condition.

Thus in total, there are m = 2027!
6!2021!

+
∑

a+43b+47c=2027
2027!

a!b!c!43b47c
functions satisfying

the conditions. Finally, there are 20272027 total functions and thus the probability is
m

20272027
≈ 9.65× 10−996.

3. A circle is divided into 432 congruent arcs by 432 points. The points are colored in four
colors such that some 108 points are colored Red, some 108 points are colored Green,
some 108 points are colored Blue, and the remaining 108 points are colored Yellow. Prove
that one can choose three points of each color in such a way that the four triangles formed
by the chosen points of the same color are congruent.

Solution: (Young Lin)

First of all for the two triangles to be congruent, since the points are all on the circle,
if a set of three points can be rotated to cover another three points on the circle, the
two triangles formed by each set of three points would be congruent. The proof will
suffice if we can show for each of the four colours we can find a set of three points,
such that each set of three points can be rotated to another. So this magic number N
(number of points in each colour such then each triangle can be rotated to another)
has to be bigger than or equal 3, and it reminds us to use pigeonhole principle.

We first consider all the points in Red, and all the non-identity rotations (that is
rotate by 180◦ · n

432
where n = 1, · · · , 431). There are 431 possibilities. There are 108

red points and green points, so among all the rotations the sum of instances a red
point will land on a green point is 1082. Denote an to be the number of red points
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that lie on green points, we have
∑431

i=1 ai = 1082. Then since ⌈1082

431
⌉ = 28, we know

there is at least one set of 28 red points that will rotate to a set of 28 green points.

By the same reasoning ⌈108·28
431

⌉ = 8 gives we can pick 8 from 28 green points to rotate
to 8 blue points, and ⌈108·8

431
⌉ = 3 shows there are three points from each of the other

colours that can rotate to 3 yellow points. So we can just pick 3 points from each
of the colours (unrotate the 3 yellow points if you wish), connect the lines and they
would be congruent triangles. And the proof is complete.

4. Prove that in a tournament with 799 teams, there exist 14 teams, that can be partitioned
into groups in a way that all of the teams in the first group have won all of the teams in
the second group.

Solution: (Young Lin)

We will use Jensen’s inequality which says for a real convex function ϕ, and numbers
x1, · · · , xn in its domain,

ϕ

(∑
xi

n

)
≤

∑
ϕ(xi)

n
.

Let the ith team (i = 1, · · · 799) win ci games, then clearly we have
∑799

i=1 ci =
(
799
2

)
.

Then we randomly choose a set of 7 teams. Notice
(
ci
7

)
is the number of sets of 7

teams that are beaten by team i. Then applying Jensen’s inequality (for ϕ(x) =
(
x
7

)
which is clearly convex)

799∑
i=1

(
ci
7

)
≥ 799 ·

(∑
ci

799

7

)
= 799 ·

(
399

7

)
.

In the set of 7 teams (call it S) from this set of teams, we know |S| =
(
799
7

)
. Since∑799

i=1

(
ci
7

)(
799
7

) ≥
799 ·

(
399
7

)(
799
7

) =
396 · 395 · 394 · 393
23 · 797 · 795 · 793

> 6

we know that the number of teams beaten by all teams can cover S more than 6
times. Take the ceiling we get that there would be at least 1 set of 7 teams that
would be beaten by at least 7 other teams (think pigeonhole principle), and that
gives the 14 teams we wanted. The proof is complete.

5. A blackboard contains 68 pairs of nonzero integers. Suppose that for each positive integer
k at most one of the pairs (k, k) and (−k,−k) is written on the blackboard. A student
erases some of the 136 integers, subject to the condition that no two erased integers may
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add to 0. The student then scores one point for each of the 68 pairs in which at least
one integer is erased. Determine, with proof, the largest number N of points that the
student can guarantee to score regardless of which 68 pairs have been written on the
board.

Solution:

Assume without loss of generality that all pairs (x, x) on the blackboard occur only
when x > 0. Let S be the set of all absolute values of all integers on the blackboard.
For every x ∈ S, choose to erase all occurrences of x on the blackboard with proba-
bility p, where p ≥ 1−p, or all occurrences of −x on the blackboard with probability
1 − p. Then observe that for distinct a, b ∈ S we get one point for each (on the
blackboard)

(a, a) with probability p,

(a,−a) or (−a, a) with probability 1,

(a, b) with probability 1− (1− p)2 ≥ 1− p2,

(a,−b) or (−a, b) with probability 1− p(1− p) ≥ 1− p2,

(−a,−b) with probability 1− p2.

So the expected number of points scored is at least 68 · min{p, 1 − p2}, which is
maximal when p = 1− p2. Choosing this value for p, we find that 68p > 42, and so
N is at least 43.

Now we demonstrate a case where one can score 43 points and 43 is the maximum
one can score. Consider a blackboard consisting of the following two kinds of pairs.

First kind: five of each pairs (i, i) where 1 ≤ i ≤ 8. (40 total pairs.)

Second kind: one of each pair (i, j) where −8 ≤ i < j ≤ −1. (28 total pairs.)

Since |S| = 8, one can choose to erase 0 ≤ n ≤ 8 of the first kind of pairs and 8− n
of the second kind of pairs giving a total score of

5n+

(
8

2

)
−
(
n

2

)
= 5n+ 28−

(
n

2

)
≤ 43.

Equality can be achieved when n = 5 or n = 6.
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