
UBC Math Circle 2022 Problem Set 9

1. Determine the maximum value of the sum

S =
∞∑
n=1

n

2n
(a1a2 · · · an)1/n

over all sequences a1, a2, a3, . . . of nonnegative real numbers satisfying

∞∑
n=1

an = 1.

Solution: (Young Lin)

We know the AM-GM inequality:(
n∏

i=1

xi

) 1
n

≤ 1

n

n∑
i=1

xi.

always holds for all natural n if the xi’s are all positive. Then

n

(
n∏

i=1

xi

) 1
n

≤
n∑

i=1

xi.

This seems to be a natural bound for the summands in S, giving

S =
∞∑
n=1

n

2n

(
n∏

i=1

ai

) 1
n

≤
∞∑
n=1

1

2n

n∑
i=1

ai.

Now we don’t know how to proceed. In order for the equality to hold, we need all
ai’s to be equal. But infinitely of them add up to 1, that’s not possible.

Thinking of sequences, what are the common ones we know? Arithmetic? Geomet-
ric? Or just picking some random numbers? Is there any choice that would naturally
sum up to 1 and also make AM-GM inequality bound optimally? GEOMETRIC SE-
QUENCES! Being an educated guess, we set

an = arn−1

And we have
∞∑
n=1

an =
a

1− r
= 1
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So a = 1− r.

By the educated guess we start our bound by

S =
∞∑
n=1

n

2n

(
n∏

i=1

ai

) 1
n

=
∞∑
n=1

n

2n

(
n∏

i=1

ai
ri
ri

) 1
n

=
∞∑
n=1

n

2n

(
n∏

i=1

ai
ri

) 1
n

r
n(n+1)

2n

=
∞∑
n=1

n

2n
r

n+1
2

(
n∏

i=1

ai
ri

) 1
n

.

Now we perform AM-GM inequality on the product term (this would be optimally
bound since everything in the bracket ai

ri
would be equal (by it is a geometric se-

quence)). So

S ≤
∞∑
n=1

1

2n
r

n+1
2

n∑
i=1

ai
ri

=
∞∑
n=1

n∑
i=1

1

2n
air

(n+1)/2−i.

Now we can interchange the double sum
∑∞

n=1

∑n
i=1 into

∑∞
i=1

∑∞
n=i (we can see it

by drawing a picture), and no limiting issues occur if the latter exists. Then

∞∑
n=1

n∑
i=1

1

2n
air

(n+1)/2−i =
∞∑
i=1

∞∑
n=i

1

2n
air

(n+1)/2−i =
∞∑
i=1

ai
ri
r1/2

∞∑
n=i

(
r1/2

2
)n

=
∞∑
i=1

ai
ri
r1/2

ri/2

2i

1− r1/2

2

=
r1/2

1− r1/2

2

∞∑
i=1

ai
ri
ri/2

2i
=

r1/2

1− r1/2

2

∞∑
i=1

ai(
1

2
√
r
)i.

And the sum would just be 1 if 1
2
√
r
is 1, or r = 1

4
.

So essentially we’ve shown we can bound S ≤ r1/2

1− r1/2

2

= 2
3
if r = 1

4
(as a general

bound since we didn’t put extra conditions on S when bounding it) and an = arn−1

a geometric sequence, but here we go among the derivation we only used 1 inequality,
namely, the AM-GM inequality which is guaranteed to hold equal since we have an
inequality (so this is the evidence that we can get to this bound). So at the end by
picking an = (1− 1

4
)(1

4
)n−1 we can achieve maximum S which is 2

3
.

2. Prove that the orthocenter, the centroid, and the circumcenter of any triangle are
collinear. This line is the Euler Line of the triangle. Prove also that the distance
from the centroid to the orthocenter is twice its distance from the circumcenter.

Solution: (Joanna Weng)

In △ABC, let the midpoints of sides AB,BC,CA be F,D,E respectively.
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Existence of the centroid: show that the three medians of a triangle con-
cur.

Let G = AD ∩ CF . We have that FD is a mid-segment of △ABC: FD ∥ AC and
2FD = AC. Then, △ACG ∼ △DFG by AA. Thus,

GC

FG
=

GA

DG
=

AC

FD
= 2.

Let G′ = CF ∩ BE. Similarly, G′C
FG′ = 2. Both G and G′ partition segment FC in

the same ratio so G = G′. We have all medians concurring at a G, which we now
call the centroid. We also have

GC

FG
=

GA

DG
=

GB

EG
= 2.

Existence of the circumcenter: show the existence of a point O that is
equidistant to points A,B,C (by constructing it).

If AO = BO, then ∠OAB = ∠OBA and △OAD ∼= △OBD by SAS. Since ∠ODA =
∠ODB and ∠ODA + ∠ODB = 180◦, we have ∠ODA = ∠ODB = 90◦ and OD is
the perpendicular bisector of segment AB.

Let the intersection of perpendicular bisectors of AB,BC be O′. We have AO′ = BO′

and BO′ = CO′, so the required equidistant O exists in exactly one place and we
now call it the circumcenter.

Existence of the orthocenter: show that the three altitudes of a triangle
concur.

Note that O is the orthocenter of △DEF . Similarly, construct points X, Y, Z such
that XB = Y B = AC,XA = ZA = BC, Y C = ZC = AB. The orthocenter of
△ABC is the point that is equidistant to the points X, Y, Z, which exists as shown
above. Let the orthocenter be H.

Altogether

There exists a homothecy about G of factor 1
2
that takes △ABC to △DEF . O is

taken to H.

3. Consider the function f : N → N that satisfies the following conditions:

1. For any natural number m, f(m) ≤ 3m.

3



2. v2(m+ n) = v2(f(m) + f(n)) for any two natural numbers m,n.1

Show that for any natural number a ∈ N, there exists a unique number b ∈ N such that
f(b) = 3a.

Solution: (Navid Safaei)

Letting x = y we obtain v2(f(x)) = v2(x). Then by putting v2(a) = k > 0 we can

consider g(x) = f(2kx)
2k

to reduce to all odd a. So we can assume that a is odd.

If x− y is not divisible by 2k we prove that f(x)− f(y) is not divisible, too. Indeed,
if z ≡ −x mod 2k. It also follows that f is injective.

Let 2k−1 < 3a < 2k. Then f(1), f(3), . . . , f(2k − 1) are pairwise distinct (mod 2k).
Hence, there is an odd x < 2k such that f(x) ≡ 3a (mod 2k). If f(x) ̸= 3a then
f(x) > 2k and f(x) + f(2k − x) ≡ 2k (mod 2k+1). Thus, f(x) + f(2k − x) ≥ 3 · 2k.
On the other hand,

f(x) + f(2k − x) ≤ 3(x+ 2k − x) = 3 · 2k.

Hence, f(x) = 3x. Thus x ≡ a (mod 2k). That is, x = a and so f(x) = 3a.

4. Let V = Zn denote the n-dimensional integer lattice and let {w1, w2, . . . , wn} ⊂ V be
a set of n linearly independent integer vectors. Define W ⊂ V to be the set of all
integer linear combinations of the elements of {w1, w2, . . . , wn}. Construct a set V/W
with elements of the form v +W for v ∈ V such that u +W = v +W iff u − v ∈ W .
Prove that |V/W | is precisely the volume of the parallelotope P spanned by the vectors

{w1, w2, . . . , wn}. (Hint: First prove that the volume of P is the sum
∑n

i=0
|mi|
2i

where
mi is the set of lattice points in an n − i-face of P but not in any n − i − 1-face of P .
For example, if n = 3 then m0 is the set of lattice points inside the parallelopiped but
not on any face of P , m1 is the set of lattice points on a face of P but not on an edge of
P , m2 is the set of lattice points on an edge of P but not on any vertex of P , and m3 is
the set of lattice points on a vertex of P . Next show that

∑n
i=0

|mi|
2i

= |V/W |.)

Solution: (Oakley Edens)

Let {w1, w2, . . . , wn} ⊂ V , W be the set of all integer linear combinations of the
{wi} (i.e. the lattice spanned by the {wi}) and P be the parallelotope spanned by
the {wi}. As in the problem, we define mi to be the set of lattice points on an
n − i face of P but not on any n − i − 1 faces of P . Let k be an arbitrary positive
integer and P ′ a parallelotope spanned by the vectors {kw1, kw2, . . . , kwn} so that
kn copies of P can be packed inside P ′. Let m′

i be the set of lattice points on an

1v2(n) is the exponent of 2 in the factorization of n.
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n − i face of P ′ but not on any n − i − 1 faces of P ′. Finally, let |P | and |P ′|
denote the volumes of P and P ′ respectively. Note that |m′

1| + |m′
2| + . . . + |m′

n| =
O(kn−1) and |P ′| = kn|P | = |m′

0| + O(kn−1). Looking at the contributions to m′
0

we find knm0 lattice points coming from the interiors of the kn copies of P inside
P ′, kn

2
m1 + O(kn−1) lattice points coming from the the lattice points of the n − 1-

faces of the kn copies of P inside P ′ (the factor of 1
2
comes from the fact that every

n − 1-face of a copy of P in the interior of P ′ is shared by exactly two distinct
copies). Continuing as above, we get kn

2i
mi + O(kn−1) lattice points from the points

on n − i faces but not on any n − i − 1 faces of the kn copies of P inside P ′. Thus
kn|P | = |P ′| = |m′

0| + O(kn−1) = knm0 +
kn

2
m1 + . . . + kn

2n
mn + O(kn−1). Dividing

by kn gives that |P | =
∑n

i=0
|mi|
2i

+O(k−1). Letting k go to infinity gives the desired
equality.

Next, since the {wi} are linearly independent, they form a basis for Qn. In this basis,
P is given by [0, 1]n (i.e the Cartesian product of the interval). Let x be a lattice
point inside P and x ∈ [0, 1]n the image of x in the basis {wi}. Define f(x) to be
the number of coordinates of x which are either 0 or 1. It is not difficult to see that
x ∈ mf(x). Finally, let u, v be lattice points, u and v their images in the basis {wi}.
Clearly u +W = v +W iff u − v ∈ {0, 1}n. Suppose u ∈ mi and v ∈ mj. If i ̸= j
then from the above, we see that u, v have a different number of coordinates which
are either 0 or 1. It follows since u, v ∈ [0, 1]n that u − v ̸∈ {0, 1}n. If i = j then
u − v ∈ {0, 1}n if only if all of the coordinates of u, v which are neither 0 nor 1 are
identical. Thus n − i of the coordinates of u − v are 0 and the remaining i can be
chosen to be either 0 or 1. It follows that there are 2i possibilities for u−v. It follows
that the image of mi in V/W has order mi

2i
(we over-count everything by a factor 2i).

Since every element of V/W corresponds to some lattice point inside P , we conclude
that |V/W | =

∑n
i=0

mi

2i
= |P |.

Here is an alternative (and much shorter proof) for those who know some abstract
algebra. Let A be the matrix whose columns are the vectors {wi}. The Z-module
W is given by AZn and |V/W | is then the order of the Z-module Zn/AZn. Using
the structure theorem for finitely generated modules over a principal ideal domain,
Zn/AZn ∼= Z/(d1) ⊕ . . . ⊕ Z/(dn) and |Zn/AZn| = d1 . . . dn since the di are nonzero
(this follows from the fact that A is full rank). According to the Smith normal form,
this will be the gcd of all n× n-minors of A. This is simply det(A) = |P |.

5. Given any positive real number ε, prove that, for all but finitely many positive integers
v, any graph on v vertices with at least (1 + ε)v edges has two distinct simple cycles
of equal lengths. (Recall that the notion of a simple cycle does not allow repetition of
vertices in a cycle.)
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Solution:

Fix ε > 0, and let G be a graph on v vertices with at least (1 + ε)v edges. Suppose
now that all simple cycles of G have pairwise distinct lengths. It suffices to show
that v cannot be greater than some positive integer.

Since each simple cycle of G contains at most v vertices and no two distinct simple
cycles of G can have equal lengths, it follows that G can have at most v distinct
simple cycles. Now we find a lower bound for the distinct simple cycles of G. Let T
be a spanning forest of G. Next, let A be the set of edges of T and let B be the set
of remaining edges of G. Of course |A| ≤ v− c, where c is the number of components
of G. Then observe that |B| ≥ (1 + ε)v − |A| ≥ (1 + ε)v − (v − c) = c + εv > εv.
Now since adding an edge to T produces a unique simple cycle, we see that for each
b ∈ B, there is a unique simple cycle in G that contains b; let C(b) denote this simple
cycle. So there are |B| distinct simple cycles C(b), and since all simple cycles of G
have pairwise distinct lengths, it follows that∑

b∈B

(|C(b)| − 1) ≥ 2 + 3 + · · ·+ (|B|+ 1) =
|B|(|B|+ 3)

2
≥ |B|2

2
> ε2v2/2.

But |A| ≤ v, and so some edge e ∈ A occurs in n > ε2v2/(2v) = ε2v/2 distinct cycles
C(b). Consider distinct b1, b2 ∈ B such that e is an edge of C(b1) and C(b2). Observe
that C(b1)∩C(b2) is a path in T that contains e, and that b1 and b2 are not edges in
C(b1)∩C(b2). Then by deleting the internal vertices of this path in C(b1)∪C(b2), we
obtain a new simple cycle C(b1, b2) that contains both b1 and b2 that is not among
the simple cycles C(b). Furthermore, this new simple cycle is uniquely determined
by the choice of b1 and b2, i.e., {b1, b2} 7→ C(b1, b2) is injective. Hence, as a lower
bound, G must contain at least

n+

(
n

2

)
=

n(n+ 1)

2
≥ n2

2
>

ε4v2

8

distinct simple cycles. But of course there is some positive integer u such that

u ≤ ε4u2

8
.

Hence, we have shown that v < u, which completes the proof.
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