UBC Math Circle 2023 Problem Set 1

Problem 1.

The sequence given by $x_0 = a, x_1 = b$, and

$$x_{n+1} = \frac{1}{2}(x_{n-1} + \frac{1}{x_n})$$

is periodic.

Prove that ab = 1.

Problem 2. Chebyshev polynomials $T_n(x)$, $U_n(x)$ are defined by $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ and $U_0(x) = 1$, $U_1(x) = 2x$, $U_{n+1}(x) = xU_n(x) - U_{n-1}(x)$, and they are determined by the equalities

$$\cos(n\theta) = T_n(\cos(\theta)), \quad \frac{\sin((n+1)\theta)}{\sin\theta} = U_n(\cos\theta)$$

For $n \ge 1$, try to prove

$$\frac{T_n(x)}{\sqrt{1-x^2}} = \frac{(-1)^n}{1\cdot 3\cdot 5\cdots (2n-1)} \frac{d^n}{dx^n} (1-x^2)^{n-\frac{1}{2}}$$
$$U_n(x)\sqrt{1-x^2} = \frac{(-1)^n(n+1)}{1\cdot 3\cdot 5\cdots (2n+1)} \frac{d^n}{dx^n} (1-x^2)^{n+\frac{1}{2}}$$

Problem 3.

Let $\mathbb{Q}[\zeta_5] = \{a_0 + a_1\zeta_5 + a_2\zeta_5^2 + a_3\zeta_5^3 + a_4\zeta_5^4 : a_i \in \mathbb{Q}\}$ and $\mathbb{Z}[\zeta_5] = \{a_0 + a_1\zeta_5 + a_2\zeta_5^2 + a_3\zeta_5^3 + a_4\zeta_5 : a_i \in \mathbb{Z}\}$, where ζ_5 is a primitive 5th root of unity. Note that $\mathbb{Q}[\zeta_5]$ is a field (equipped with + and \cdot from \mathbb{C} it is closed under addition/multiplication and has additive/multiplicative inverses) while $\mathbb{Z}[\zeta_5]$ is a ring (it is closed under addition/multiplication, has additive inverses but not necessarily multiplicative inverses).

- (a) Define $\sigma_1 : \mathbb{Q}[\zeta_5] \to \mathbb{Q}[\zeta_5]$ by $\sigma_1(z) = z$ and $\sigma_2 : \mathbb{Q}[\zeta_5] \to \mathbb{Q}[\zeta_5]$ by $\sigma_2(\sum_{i=0}^4 a_i\zeta_5^i) = \sum_{i=0}^4 a_i\zeta_5^{2i}$. Note the following properties of $\sigma_i : \sigma_i(z+w) = \sigma_i(z) + \sigma_i(w)$ and $\sigma_i(zw) = \sigma_i(z)\sigma_i(w)$. (These are two of the four field automorphisms on $\mathbb{Q}[\zeta_5]$, with the other two being $\overline{\sigma}_i$). We have a map $N : \mathbb{Q}[\zeta_5] \to \mathbb{R}$ given by $N(z) = |\sigma_1(z)\sigma_2(z)|^2$. (In fact you can check that $N(z) \in \mathbb{Q}$). Prove that for any $a, b \in \mathbb{Z}[\zeta_5]$ with $b \neq 0$, there exist $q, r \in \mathbb{Z}[\zeta_5]$ such that a = qb + r and N(r) < N(b).
- (b) We call an element $p \in \mathbb{Z}[\zeta_5]$ prime if whenever $p \mid ab$ for $a, b \in \mathbb{Z}[\zeta_5]$, we have either $p \mid a$ or $p \mid b$. Use (a) to prove that every $z \in \mathbb{Z}[\zeta_5]$ may be written uniquely as $z = p_1^{a_1} \dots p_n^{a_n}$ where the p_i are prime and the $a_i \geq 1$ up to rearrangement and multiplication by unit elements u satisfying N(u) = 1 (that is two representations are considered equivalent if one can get from one to the other by rearranging terms and multiplying by units).
- (c) Use (b) to prove that the equation $x^5 + y^5 = z^5$ has no solutions in nonzero integers.