
UBC Math Circle 2023 Problem Set 1 Solutions

Problem 1.
The sequence given by x0 = a, x1 = b, and

xn+1 =
1

2
(xn−1 +

1

xn

)

is periodic.
Prove that ab = 1.

Solution: manipulate the equation:

xn+1xn =
1

2
(xnxn−1 + 1), xn+1xn +K =

1

2
(xnxn−1 + 1) +K

!
=

1

2
(xnxn−1 +K)

=⇒ K +
1

2
=

K

2
=⇒ K = −1

thus

xn+1xn − 1 =
1

2
(xnxn−1 − 1) =

1

2n
(ab− 1)

but since xn is periodic, xn+1xn = ab for some arbitrary large index n, then ab − 1 = 1
2n
(ab −

1) =⇒ ab = 1. □

Problem 2. Chebyshev polynomials Tn(x), Un(x) are defined by T0(x) = 1, T1(x) = x, Tn+1(x) =
2xTn(x) − Tn−1(x) and U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) − Un−1(x), and they are
determined by the equalities

cos(nθ) = Tn(cos(θ)),
sin((n+ 1)θ)

sin θ
= Un(cos θ)

For n ≥ 1, try to prove

Tn(x)√
1− x2

=
(−1)n

1 · 3 · 5 · · · (2n− 1)

dn

dxn
(1− x2)n−

1
2

Un(x)
√
1− x2 =

(−1)n(n+ 1)

1 · 3 · 5 · · · (2n+ 1)

dn

dxn
(1− x2)n+

1
2

Solution: For the first identity we first divide and get

Tn+1(x)√
1− x2

= 2x
Tn(x)√
1− x2

− Tn−1(x)√
1− x2

As for the recurrence relation, we compute

dn+1

dxn+1
(1− x2)n+1− 1

2 =
dn

dxn

d

dx
(1− x2)n+1− 1

2

=
dn

dxn
(n+ 1− 1

2
)(1− x2)n−

1
2 (−2x)

= −(2n+ 1)x
dn

dxn
(1− x2)n−

1
2 − n(2n+ 1)

dn−1

dxn−1
(1− x2)n−

1
2



dividing 1 · 3 · · · (2n+ 1)(−1)n+1 we end up

(−1)n+1

1 · 3 · · · (2n+ 1)

dn+1

dxn+1
(1− x2)n+1− 1

2

=
(−1)n

1 · 3 · · · (2n− 1)
x
dn

dxn
(1− x2)n−

1
2 − n(−1)n−1

1 · 3 · · · (2n− 1)

dn−1

dxn−1
(1− x2)n−

1
2

where we are thrilled to realize that the second term on the last line before would have to be
Un−1(x)

√
1− x2.

Setting

tn+1(x) :=
(−1)n+1

1 · 3 · · · (2n+ 1)

dn+1

dxn+1
(1− x2)n+1− 1

2

un−1(x) :=
n(−1)n−1

1 · 3 · · · (2n− 1)

dn−1

dxn−1
(1− x2)n−

1
2

and we wanna show tn(x) = Tn(x)√
1−x2 , un(x) =

√
1− x2Un(x). Omitting the base case checks,

assuming it holds true for all k < n, using the inductive hypothesis we get

tn(x) = x
Tn−1(x)√
1− x2

−
√
1− x2Un−2(x)

it is easy to check by the trignometric definition that

Tn+1(x) = xTn(x)− (1− x2)Un−1(x)

which would yield tn(x) =
Tn(x)√
1−x2 .

On the other hand the inductive step to un−1(x) is done by checking un−1(x) and
√
1− x2Un−1(x)

has the same derivatives and coincide at x = 1. It is easy to check that both equal 0 at x = 1, and
d

dx

√
1− x2Un−1(x) =

−x√
1− x2

Un−1(x) +
√
1− x2U

′

n−1(x)

by the inductive hypothesis and simple observation

u
′

n−1(x) = −ntn(x) =
−nTn(x)√
1− x2

so we are left to check that

−xUn−1(x) + (1− x2)U ′
n−1(x) = −nTn(x)

which according to the trignometric relationship translates to

− cos(x)
sin(nx)

sin(x)
+ sin2(x)

n cos(nx) sin(x)− cos(x) sin(nx)

sin2(x)

1

sin(x)
= −n cos(nx)

which is also easy to check. And we are done with the induction step, the proof is complete. □

Problem 3.
Let Q[ζ5] = {a0+a1ζ5+a2ζ

2
5+a3ζ

3
5+a4ζ

4
5 : ai ∈ Q} and Z[ζ5] = {a0+a1ζ5+a2ζ

2
5+a3ζ

3
5+a4ζ5 :

ai ∈ Z}, where ζ5 is a primitive 5th root of unity. Note that Q[ζ5] is a field (equipped with + and
· from C it is closed under addition/multiplication and has additive/multiplicative inverses) while
Z[ζ5] is a ring (it is closed under addition/multiplication, has additive inverses but not necessarily
multiplicative inverses).



(a) Define σ1 : Q[ζ5] → Q[ζ5] by σ1(z) = z and σ2 : Q[ζ5] → Q[ζ5] by σ2(
∑4

i=0 aiζ
i
5) =∑4

i=0 aiζ
2i
5 . Note the following properties of σi: σi(z + w) = σi(z) + σi(w) and σi(zw) =

σi(z)σi(w). (These are two of the four field automorphisms on Q[ζ5], with the other two
being σi). We have a map N : Q[ζ5] → R given by N(z) = |σ1(z)σ2(z)|2. (In fact you can
check that N(z) ∈ Q). Prove that for any a, b ∈ Z[ζ5] with b ̸= 0, there exist q, r ∈ Z[ζ5]
such that a = qb+ r and N(r) < N(b).

(b) We call an element p ∈ Z[ζ5] prime if whenever p | ab for a, b ∈ Z[ζ5], we have either p | a
or p | b. Use (a) to prove that every z ∈ Z[ζ5] may be written uniquely as z = pa11 . . . pann
where the pi are prime and the ai ≥ 1 up to rearrangement and multiplication by unit
elements u satisfying N(u) = 1 (that is two representations are considered equivalent if
one can get from one to the other by rearranging terms and multiplying by units).

(c) Use (b) to prove that the equation x5 + y5 = z5 has no solutions in nonzero integers.

Proof.

(a) Let ζ = ζ5. Let z =
∑4

i=0 uiζ
i. Then

√
N(z) =

√
|σ1(z)|2|σ2(z)|2 ≤ 1

2
(|σ1(z)|2 +

|σ2(z)|2) by AM-GM. A computation shows that 1
2
(|σ1(z)|2+ |σ2(z)|2) = 1

4

∑
0≤i<j≤4(ui−

uj)
2. We now prove the following lemma: For any choice of five real numbers {ui}0≤i≤4

one can find real numbers {vi}0≤i≤4 such that ui−vi ∈ Z for all i and such that
∑

0≤i<j≤4(vi−
vj)

2 < 4. Note that for any v ∈ R, we have

∑
0≤i<j≤4

(vi − vj)
2 = 5

4∑
i=0

(vi − v)2 −

(
4∑

i=0

(vi − v)

)2

≤ 5
4∑

i=0

(vi − v)2

We note that we can choose the vi such that ui−vi ∈ Z, the vi all lie in an interval of length
< 1 such that the there are k, l with |vk − vl| ≤ 1

5
. Indeed, we can choose the vi satisfying

the first two conditions by taking 0 ≤ vi < 1. If the smallest interval containing the vi has
length ≤ 4

5
then the third condition is clearly satisfied. Otherwise, the smallest interval has

length between 4
5

and 1. We may then subtract 1 from the largest of the vi, clearly the other
two conditions are still satisfied. Take v = vk+vl

2
. Then |vk − v| ≤ 1

10
and |vl − v| ≤ 1

10
.

To the remaining vi, we may add or subtract 1 until |vi − v| ≤ 1
2
. The vi still satisfy the

condition ui − vi ∈ Z. Moreover,∑
0≤i<j≤4

(vi − vj)
2 ≤ 5

4∑
i=0

(vi − v)2 ≤ 5(
1

102
+

1

102
+

1

22
+

1

22
+

1

22
) =

77

20
< 4.

And the vi satisfy the second condition as well. Returning to our original problem, let
a, b ∈ Z[ζ] with b ̸= 0. Since Q[ζ] is a field, we may write a

b
as
∑4

i=0 uiζ
i with ui ∈ Q. By

the lemma above, there exist vi ∈ R such that ui − vi ∈ Z and such that 1
4

∑
0≤i<j≤4(vi −

vj)
2 < 1. Since ui ∈ Q, it follows that vi ∈ Q. Let c =

∑4
i=0 viζ

i. Then c ∈ Q[ζ],
a
b
− c ∈ Z[ζ] and N(c) < 1 by the result above. Let q = a

b
− c and r = bc. Clearly

a = qb + r and since N(z) is multiplicative, it follows that N(r) = N(bc) < N(b) as
desired.

(b) We call an element a ∈ Z[ζ] irreducible if a is not a unit and a = bc with b, c ∈ Z[ζ] implies
that one of b, c is a unit (that is b−1, c−1 ∈ Z[ζ] or equivalently N(b) = 1 or N(c) = 1. These
conditions are equivalent since if b ∈ Z[ζ] then N(b) ∈ N ∪ {0} and N(b−1) = N(b)−1. In



the other direction, if N(b) = 1 then letting c = σ1(b)|σ2(b)|2, we see that bc = N(b) = 1).
We claim that irreducible elements are the same as prime elements. It is clear that every
prime is irreducible. Conversely, if p is irreducible and p | ab but p ∤ a, b then choosing
a, b minimizing N(a) + N(b), we may write a = pq + r where N(r) < N(p) ≤ N(a).
Multiplying through by b, we see that ab = bpq + br. It follows that p | br where now
N(b) + N(r) < N(a) + N(b). By minimality, p | b or p | r. In the former case, we are
done. In the latter case, since N(r) < N(p), it follows that r = 0 and p | a.

To show existence of factorizations, Note that if a0 is not irreducible, then a0 = p1a1,
where neither p1 nor a1 is a unit. This condition implies 1 < N(p1), N(a1) < N(a0).
Repeating this process on p1 or a1 and so on, we get that the norms of the factors are strictly
decreasing sequences of positive integers. Hence the process must eventually terminate.
This happens only when all the factors are irreducible. By the lemma above, all irreducible
elements are prime. Next, to show uniqueness, suppose that a = p1 . . . pn = q1 . . . qm are
two factorizations which differ (in more than just order and multiplication by units). We
may assume that N(a) is minimal among elements having more than one factorization.
Then p1 | a = q1 . . . qm and since p1 is prime, it follows that p1 | qi for some i. Without loss
of generality, we may assume i = 1. Since q1 is irreducible and q1 = p1r, it follows that r is
a unit. Hence ar−1

p1
= a

q1
has two different factorizations. Since N(p1) = N(q1) > 1 (since

neither are units), this contradicts the minimality of a. Hence Z[ζ] has unique factorization
into primes.

(c) Suppose x, y, z is a solution in nonzero integers to x5+ y5 = (x+ y)(x+ ζy)(x+ ζ2y)(x+
ζ3y)(x + ζ4y) = z5. We may assume without loss of generality that gcd(x, y, z) = 1.
We treat only the case 5 ∤ x, y, z. If −z ≡ x ≡ y (mod 5Z), then −2z5 ≡ z5 (mod 5),
a contradiction. Hence replacing x5 + y5 = z5 with x5 + (−z)5 = (−y)5 as necessary,
we may assume that x ̸≡ y (mod 5). Suppose (x + ζ iy) and (x + ζjy) share a common
factor c for i ̸= j. Then c | (ζ i − ζj)y and c | (ζ i − ζj)x as well as c | z. Note that
N(ζ i − ζj) = 5 for all i ̸= j. Thus N(c) | 5N(x) = 5x4, N(c) | 5N(y) = 5y4 and
N(c) | N(z) = z4. It follows that N(c) | gcd(5x4y4, z4) = 1. Thus c is a unit. It follows
that x + y, . . . , x + ζ4y are all relatively prime. Using unique factorization, it follows
that there exist t ∈ Z[ζ] and units u such that x + ζy = ut5. Let t =

∑4
i=0 aiζ

i. Note
that t5 ≡

∑4
i=0 a

5
i (mod 5Z[ζ]) (where the notation states that t5 =

∑4
i=0 a

5
i differs by a

multiple of 5 in Z[ζ], this is clear by expanding). It follows that t5 ≡ t
5
(mod 5Z[ζ]). Since

u is a unit, a theorem of Kronecker implies that u
u
= ζ i for some i. Hence x+ ζy = ut5 ≡

ζ iut5 ≡ ζ iu
∑4

i=0 a
5
i (mod 5Z[ζ]). Similarly, x+ ζ−1y ≡ ζ−iu

∑4
i=0 a

5
i (mod 5Z[ζ]). Then

ζ−i(x + ζy) ≡ ζ i(x + ζ−1y) (mod 5Z[ζ]) or x + ζy − ζ2ix − ζ2i−1y ≡ 0 (mod 5Z[ζ]). If
1, ζ, ζ2i, ζ2i−1 are all distinct, then this implies that 5 | x, y, a contradiction. This leaves
three options: 1 = ζ2i, 1 = ζ2i−1 or ζ = ζ2i−1. In the first case, the equation above
collapses to ζy−ζ−1y ≡ 0(mod 5Z[ζ]), hence 5 | y. In the second case, it instead becomes
(x− y)− (x− y)ζ ≡ 0 (mod 5Z[ζ]). Hence 5 | x− y and x ≡ y (mod 5), contradicting our
initial choice. Finally, in the last case, the equation collapses to x − ζ2x ≡ 0(mod 5Z[ζ])
and 5 | x.

□


