UBC Math Circle 2023 Problem Set 2

Problem 1. Let p(z) = 2? — 3z + 2. Show that for any positive integer n there exist unique
numbers a,, b, such that the polynomial ¢, (z) = 2" — a,z — b, is divisible by p(z).

solution 1. Assume that we have found such numbers for every n. Then ¢,,,1(z) — xq,(x) must
be divisible by p(x). But

Gni1(z) — 2q,(2) = 2" — a1 — by — 2"+ a2 + b

= —Qp 1T — bpy1 + an(2® — 32+ 2) + 3a,7 — 2a, + by

= ap (2% — 32+ 2) + (3an + by — Anp1)T — (2ap + bpy1)

and this is divisible by p(x) if and only if 3a,, + b,, — a,+1, 2a,, + b, are both equal to zero. This
means that the sequences are uniquely determined by the recurrences a; = 3,b; = —2,a,.1 =
3a, + by, byy1 = —2a,. The sequences exist and are uniquely defined by the initial condition.

Problem 2. Find all functions f : N — N satisfying
F(f(f(n)+6f(n)=3f(f(n)) + 4n+2001,Vn € N

solution 2. We first try a function of the form f(n) = n+ a. The relation from the statement yields
a = 667, and hence f(n) = n + 667 is a solution. Let us show that this is the only solution.

Fix some positive integer n and define ag = n, and a, = f(f(---(f(n)---))), where the compo-
sition is taken k times, £ > 1. The sequence (ay)x>o satisfies the inhomogeneous linear recurrence
relation

A3 — 3ak+2 + 6a;€+1 - 4ak = 2001

A particular solution is a; = 667k. The characteristic equation of the homogeneous recurrence
ap43 — 3apy2 + 6ag41 — 4ap = 01is

AN =3\ +6MA—-4=0

An easy check shows that \; = 1 is a solution to this equation. Since \® — 3)\? + 6\ — 4 =
(A—1)(A\*—2X\+4), the other two solutions are s 3 = 1=iv/3, thatis, Ao 3 = 2(cos(3)£isin(%)).
It follows that the formula for the general term of a sequence satisfying the recurrence relation is

k k
ap = ¢ + 2" cos(%) + c32" sin(?ﬂ) + 667k, k>0

where ¢y, ¢o, c3 € R.

If c; > 0, then az(am,1) Will be negative for large m, and if c; < 0, then ag,, will be negative for
large m. Since f(n) can take only positive values, this implies that c; = 0. A similar argument
shows that c3 = 0. It follows that a; = ¢; + 667k. So the first term of the sequence determines
all others. Since ay = n, we have ¢; = n, and hence a;, = n + 667k, for all k. In particular,
a; = f(n) = n+ 667, and hence this is the only possible solution.

Problem 3. A polygon is called convex if all its internal angles are smaller than 180 degrees. Given
a convex polygon, prove that one can find three distinct vertices A, P, (), where P() is a side of the
polygon, such that the perpendicular from A to the line P() meets the segment P(Q).



solution 3. Let n be the number of vertices. Let P() be the longest side of the plygon, label the
vertices by Ay, As, ..., A, suchthat A; = P, A, = Q.

Let /1, {5 be the lines perpendicular to A; A,, passing through A;, A,, respectively.

Let S be the region between /1, /5. Note that for 2 < ¢ < n — 1 if A, lies on S, then the perpendic-
ular from A; to A; A,, would lie on the segment A; A,, and we are done.

Hence we may assume none of the A’s liesin S for2 <i <n — 1.

Color all the points lying on the same side of ¢, as A; red , and the points lying on the same side
of /1 as A,, blue.
Note that since no point lies in .S (other than Ay, A,,), each point receives exactly one color.

Now moving along the path A;A;,, starting from A; we eventually reach A,,. But A; is red and
A, is blue, hence we can consider the first index such that we have crossed from a red point to a
blue point. Let this index be 7, hence A; is red and A;; is blue. Note that since 3 < n we know
(Ai, Aiv1) # (Aq, Ay) hence A;, A;y 1 are on different sides of S with at least one of them not
lying in it.

It now follows that A; A; 1 > A;A,, contradicting that A; A,, was the largest side.

Hence there is point whose altitude to A; A, falls on the segment A; A, as desired. O



