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Outline: 
I. Background and motivation: 

o What are neural crest cells (NCCs)? 
o Two curious emergent behaviors in clusters: how? 
o Existing “rule-based” phenomenological models  

II. A biomechanical model based on GTPase biochemistry 

III. Main result: “persistence of polarity” (PoP) is the key 

IV. Comparison with experiments  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Mayor and Theveneau (2013). Development. 140, 2247-51. 

• What are neural crest cells?

I. Background and motivation

!4



Carmona-Fontaine et al. (2011). Dev. Cell 21, 1026-37. 

Curious behavior no. 1:
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Time (minutes)

Spontaneous collective migration



Carmona-Fontaine et al. (2011) 
Dev. Cell 21, 1026-37. 

Spontaneous collective 
migration
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Curious behavior no. 2:
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Group advantage in chemotaxis

• Cluster chemotaxes toward Sdf1 
• Single cell wanders around (Theveneau et al. 2010)



Emergent property in clusters
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✦  How? Propose hypotheses and test them with computations  

✦  My narrative: follow story 1 (spontaneous migration); then return 
to story 2 (chemotaxis) at the end

Other in vitro/in vivo evidence:

• Clusters of bovine capillary endothelial cells in confined geometry (Huang et 
al., Cytoskeleton 2005)  

• Madin-Darby canine kidney (MDCK) cells in confined geometry (Vedula et al., 
PNAS 2012) 

• Frog: migration depends on confinement to “channels” (Szabó et al. J. Cell 
Biol. 2016) 

• Zebrafish: successful migration without filapodia-mediated chemotaxis (Boer et 
al., PLoS Gen. 2015) 

• Chick: spontaneous migration in opposite directions (Burns et al., Development 
2002) 

• Lymphocytes: collective chemotaxis (Malet-Engra et al. Curr. Biol. 2015)



Spontaneous collective migration: How?
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Prevailing model due to Mayor et al:  
Result of two competing/cooperating mechanisms:  

(1) Contact inhibition of locomotion (CIL) 
(2) Co-attraction (CoA)

Theveneau & Mayor (2012): Dev. Biol., 366, 34-54. 
Woods et al. (2014): PLoS ONE 9(9): e104969. 
Szabó et al. (2016): J. Cell Biol. 213: 543-555.



Contact inhibition of locomotion (CIL)
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• Observation: cells retract and separate after collision in 
1D channel

Scarpa et al. Biol. Open (2013), 2, 901-906.



Contact inhibition of locomotion (CIL)
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• Mechanical contact triggers Rac-Rho dynamics  

• Amounts to a dispersal effect



Co-attraction (CoA)
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• NC cells release ligand C3a; express receptor C3aR 
• C3a + C3aR binding leads to Rac activation 
• Amounts to an aggregating effect

Carmona-Fontaine et al. (2011). Dev. Cell 21, 1026-37. 



CIL + CoA ➔ Spontaneous collective 
migration?
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• CIL + CoA ➔ clustering + “interior inhibition” 
• Cells can only protrude “forward” or “outward” 
• But symmetry breaking?



Two model implementations so far

!14

• Woods et al., PLoS ONE (2014) 9(9): e104969. 

• Ballistic particle motion subject to force rules: 



Model implementation 1:
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• Woods et al., PLoS ONE (2014) 9(9): e104969.



Model implementation 2:
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• Szabó et al., J. Cell Biol. (2016) 213: 543-555. 

• Cellular Potts model, with “cell polarity vector” modulated 
according to CIL and COA



CIL+CoA enough for Spont. Mig.?  
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• Woods et al.: ballistic motion relies on inertia 

• Szabó et al.: relies on rules that preserve polarity 

• Require additional rules

In these two models:

• Failed to produce spontaneous collective migration  

• The centroid meanders

We built our own model with CIL and CoA: 



Our hypotheses:
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• CIL + CoA: not sufficient for spontaneous migration 

• Some sort of “persistence of polarity” (PoP) is a 
necessary ingredient

• Biological origin of PoP: suggestions from literature: 
o Noise/random walk: new Rac1 hotspots ! repolarization 

o Rac1 suppression ! increased single cell persistence 

Pankov et al. (2005) J. Cell Biol. 170:793–802. 
Bass et al. (2007) J. Cell Biol. 177:527–538. 
Matthews et al. (2008) Development 135:1771–1780.

• Our claim: CIL + CoA ! Rac1 suppresion ! PoP



II. A chemo-mechanical model
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▪ A biochemistry-based model as alternative to 
phenomenological “rule-based models” 

✓ Kinetic model: how GTPases produce polarization 

✓ Mechanical model: how cells deform and move 

▪ Coupling the two to produce:  
✓ Contact inhibition of locomotion (CIL)  

✓ Co-attraction (CoA)  

✓ Persistence of polarity (PoP)  

✓ Spontaneous collective migration (SCM)



Kinetic model: GTPase biochemistry
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• Planar 2D representation 

• Rac: active (Ra), inactive (Ri) forms on the 
membrane; and cytosolic form (Rc) in the cytoplasm 

• Similarly for Rho: ρa, ρi and ρc



Reaction-diffusion + conservation
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Similar equations for Rho species ρa, ρi and ρc.

2 2
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Rac-Rho dynamics: root of polarity
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Holmes & Edelstein-Keshet, Phys. Biol. 13 (2016) 046001 

active Rac

inactive Rac

active Rho

inactive Rho

CIL and CoA: also coded through the rate coefficients 



Mechanical model: nodal motion
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• Protrusion/contraction forces: depends on Rac/Rho polarity 
• Mechanical feedback: membrane tension inhibits local Rac

η
dri
dt

= fi−1 + fi + (pi +Fi )ni

fi-1

fi

pi
Fi



III. Model predictions
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a) Single-cell: polarization, motility, “run-and-tumble” 

b) Pairwise interaction: contact inhibition (CIL) 

c) Clustering: role of co-attraction (CoA) 

d) Symmetry breaking: persistence of polarity (PoP) 
 

e) Spontaneous collective migration: cluster size effect 
 

f) Chemotaxis: group advantage in shallow gradient

Curious behavior no. 1 explained ……

Curious behavior no. 2 explained ……



(a) Single cell: polarization & motility
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• Cell polarity: Rac-Rho dynamics (Edelstein-Keshet, Cell Syst. 2016)  

• Randomization of polarity through Rac modulation  

• Reproduces “run-and-tumble” of NCC cells (Theveneau et al. Dev. 
Cell 2010)



Multiple runs: persistent ratio
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Szabó et al. (2016): 4 hrs; 
persistence = 0.5 (in vivo), 
0.6 (in vitro; above)

200 µm

Our model (4 hrs): 
persistence = 0.564



(b) CIL: contact inhibition of locomotion
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• Motivated by in vitro experiments of Scarpa et al. (2013).



CIL: model prediction
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• Model prediction of two-cell encounter in channel 

• Realization of CIL in model: upregulating Rho; down Rac



(c) CoA: maintains cell clusters
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Without CoA



(c) CoA: maintains cell clusters
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With CoA

• Each cell boundary node carries C3a field 

• CoA: upregulating Rac rate due to neighbor’s C3a



(c) CoA: maintains cell clusters
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CoA: Comparison with experiment

!32• Carmona-Fontaine et al., Dev. Cell 21, 1026–1037 (2011)



(d) Persistence of Polarity (PoP)
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• CIL + CoA: ensures continual interaction 

• Suppresses new Rac1 hotspots, produces PoP 

• Perpetuates initial asymmetry due to left wall
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• Spontaneous collective migration of 49 cells 

(e) Spontaneous collective migration



Cluster size effect:

N =
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Cluster size effect:
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• Collective migration: stronger for larger clusters 

• Size effect tends to saturate for large N 

• Why? 

• Fallibility of persistence of polarity (PoP)



PoP: not foolproof but stochastic
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Centroid trajectories 
for 10 runs at n=4



Example of PoP failure for 4 cells 
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Robustness increases with n
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n=4



Robustness increases with n
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n=9



Robustness increases with n
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n=16



Robustness increases with n
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n=36



Robustness increases with n
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n=49



Confinement effect
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Fix N, vary corridor height w or confinement ……

w=4 w=2

Take N = 16, for example:



Why optimal confinement w=N1/2?
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w=8

Under-
confinement

w=2 Over-
confinement

w=4 Goldilocks 
confinement!



IV. Comparison with experiments
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o Qualitatively: spontaneous collective migration 

o Quantitatively: comparing 3 numerical indices 

a) Speed of collective migration  

b) Persistence ratio 

c) Optimal confinement



(a) Speed of collective migration
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1.6 µm/min

N=49

1.5 µm/min



Agreement with experimental data
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Captures cluster speed after matching single cell 
speed of 3 micron/min during “run” phase.



(b) Persistence ratio
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N=1          4            9           16          25           36         49

Highly persistent trajectories; almost ballistic for larger clusters



Persistence ratio: in vivo/in vitro
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(c) Optimal confinement in vivo

!51Our model prediction: optimal w = N1/2



Chemotaxis in a weak gradient

!52

• This was our “curious behavior no. 2” 
• Let’s look at a single cell first as a baseline ……

• Failed to chemotax efficiently.



Group advantage in chemotaxis
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• Successful collective chemotaxis:
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Comparison: single and cluster trajectories

Theveneau et al. (2010) Model prediction



Group advantage: Success rate
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Cluster centroid persistence time
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Steeper gradient



Chemotaxis index (CI):
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Steeper gradient



● Advocating modeling on a deeper level than rule-based paradigm 

● Integrating GTPase biochemistry with mechanics of cell motility 

● Emergent behavior from known biology: CIL + CoA ! PoP  
 
 
Explains two emergent behaviors: 

● Spontaneous migration in the absence of chemoattractant: 

➡ PoP sensitizes cell cluster to initial bias in confined channel 

● Collective chemotaxis: group advantage in sensing weak gradient:  

➡ PoP sensitizes cluster to weak gradient

Summary
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