

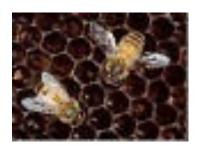
Mathematical Methods behind Stunning Symmetries

thanks to www.scienceu.com

Tilings around us

Walls are tilings

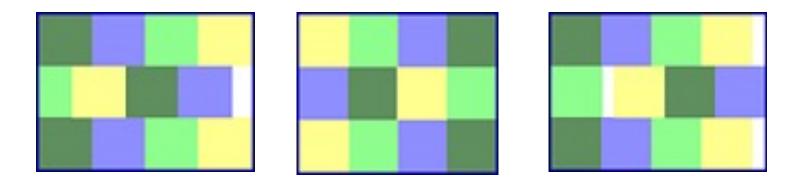
Beehives are tilings



Tilings are tilings

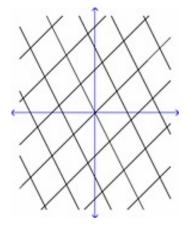
What is a tiling?

A way of covering a flat surface with smaller shapes so there are no gaps or overlaps



Some definitions

We'll study plane tilings where the surface is the 2dim plane and the smaller shapes are a collection of 2-dim shapes called tiles



Making tilings

To recreate a tiling we need to decide how many different tiles we need. We say two tiles are congruent if they are the same size and shape (but colour can be different)

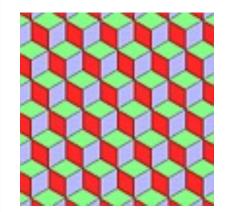
Not congruent

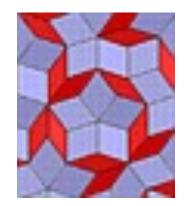
These are not congruent because they are different shapes

These are not congruent Because they are different sizes

Prototiles

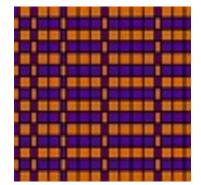
If we have some tiling T then the minimum set S such that every tile is congruent to one tile in S is the generating set of prototiles





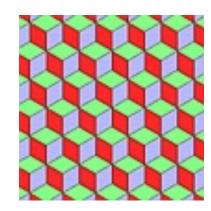


Making nice tilings



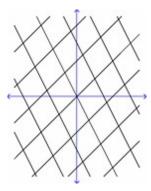
Repeating tilings = repeats in one direction

Periodic tilings = repeats in two directions

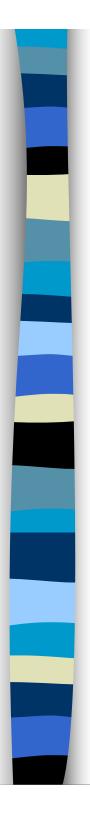


Test for periodic tilings

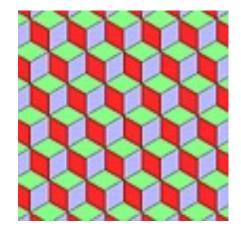
A lattice is a grid consisting of two sets of evenly spaced parallel lines

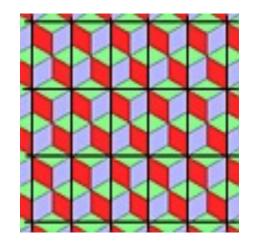


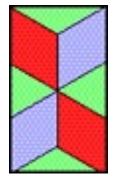
A tiling is periodic if we can find a lattice to lay over our tiling so every parallelogram in the lattice is the same

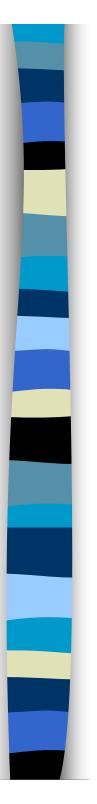


Trying out the test



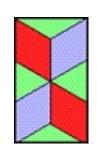


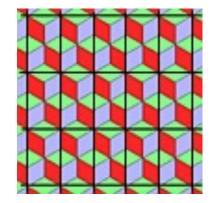


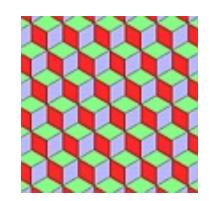


Basic units

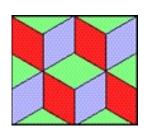
We'll call the parallelogram a basic unit and make the periodic tiling by translating copies and pasting

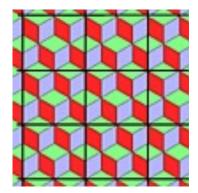




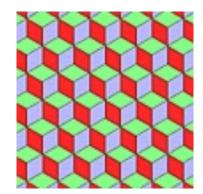


NO here is another...





→

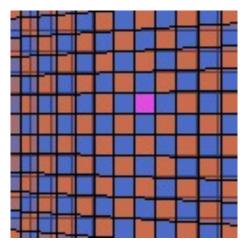


Symmetry in periodic tilings

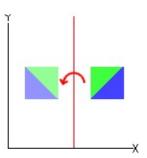
A figure in the plane is symmetric if you can pick it up, move it around, put it down again so it looks like it hasn't moved

Symmetry in periodic tilings

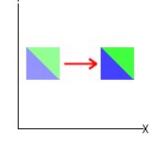
A figure in the plane is symmetric if you can pick it up, move it around, put it down again so it looks like it hasn't moved



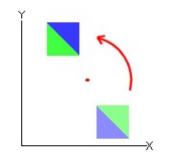
Isometries: kinds of moves



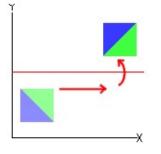
Reflection



Translation



Rotation



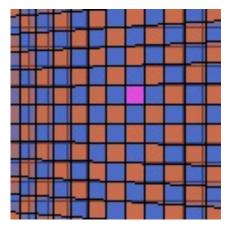
Glide reflection

Symmetry group

The specific isometries that fix your tiling are called symmetries and the collection of all its symmetries is the symmetry group

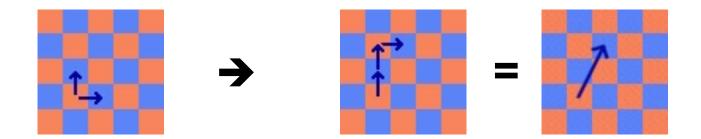
Symmetry group

The specific isometries that fix your tiling are called symmetries and the collection of all its symmetries is the symmetry group



Generators of a symmetry group

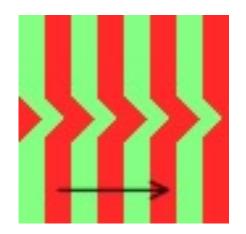
When we combine two symmetries we get another, so symmetry groups are big

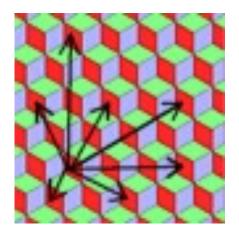


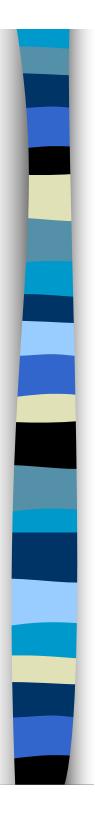
The basic ones are called generators

Wallpaper tilings

If you can slide the tiling in any direction so it eventually looks like it hasn't moved



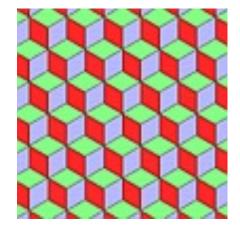




Fundamental domains Q: can we use tiles and symmetries for a better description than basic units?

A: Yes! Make a list of all the symmetries that are generators. Now find a small piece of tiling that always moves when the generators are applied. Make the tiling by moving this fundamental domain

Making wallpaper



has generating set 180degree rotation andhorizontal translation

and fundamental domain

Making different wallpaper

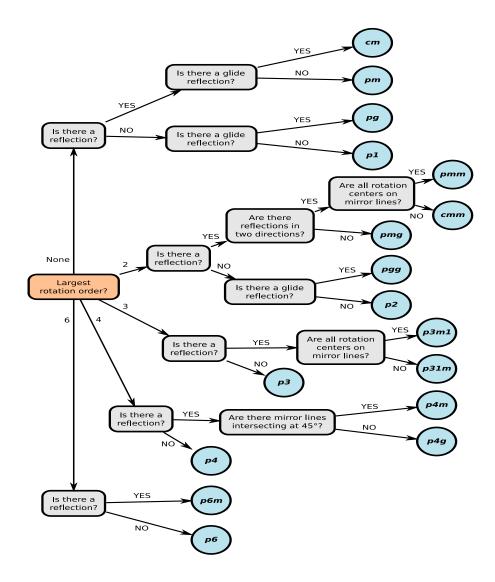
Can we count all symmetry combinations that will give a wallpaper tiling?

Making different wallpaper

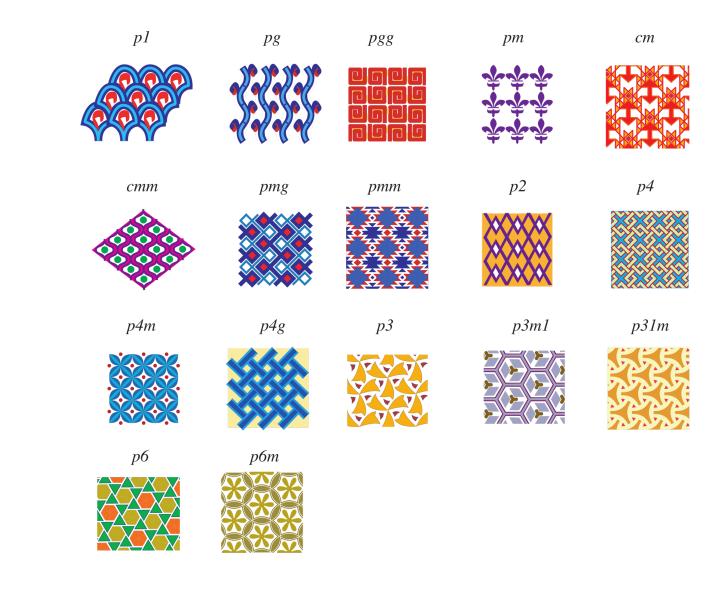
Can we count all symmetry combinations that will give a wallpaper tiling?

YES! There are only 17

Identifying wallpaper

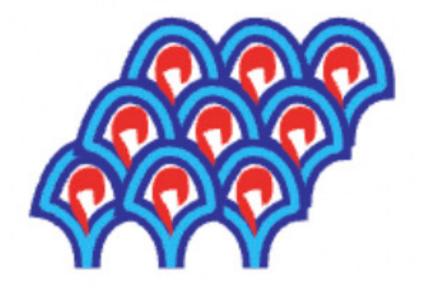


Identifying wallpaper

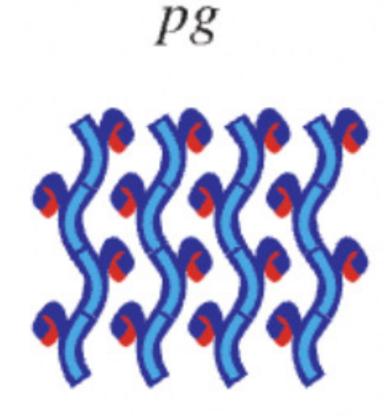


p1: translation in any direction

pI



pg: glide reflection

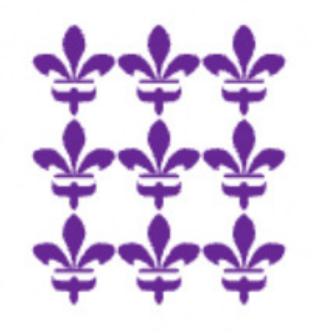


pgg: 2 perpendicular glide reflections + 180 degree rotation

pgg

pm: axis translation + reflection

pm

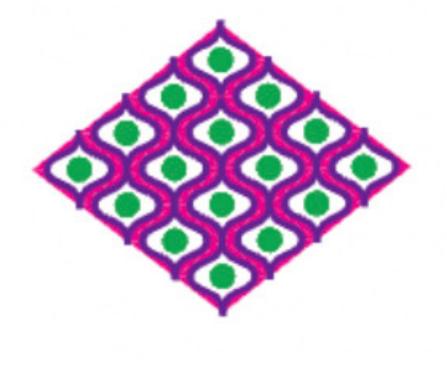


cm: glide reflection + reflection in parallel axis

ст

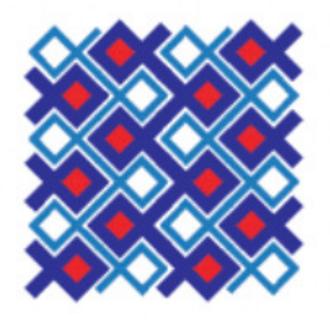
cmm: 2 perpendicular reflections + 180 degree rotation

cmm



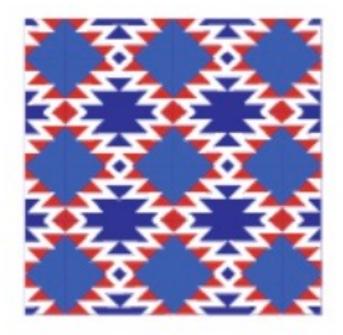
pmg: reflection in 1 axis + 180 degree rotation

pmg



pmm: 2 perpendicular reflections

ртт



p2: translation + 180 degree rotation

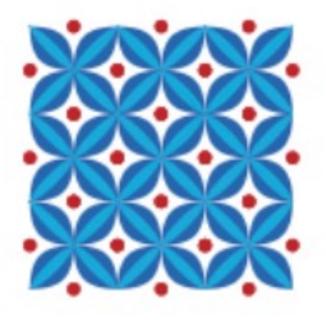


p2

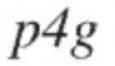
p4: 90 degree rotation

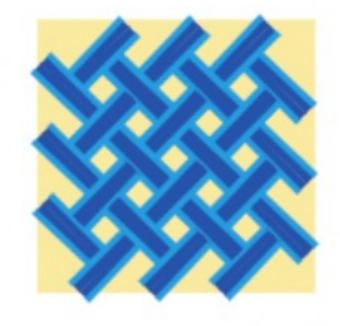
p4m: 90 degree rotation + 4 reflections

p4m



p4g: 90 degree rotation + two perpendicular reflections



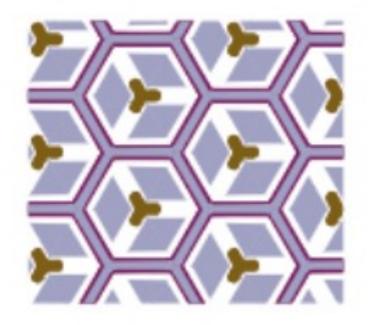


p3: 120 degree rotation

р3

p3m1: 120 degree rotation + reflection

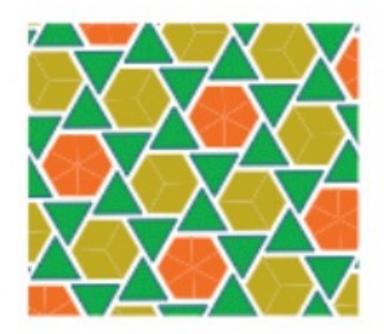
p3m1



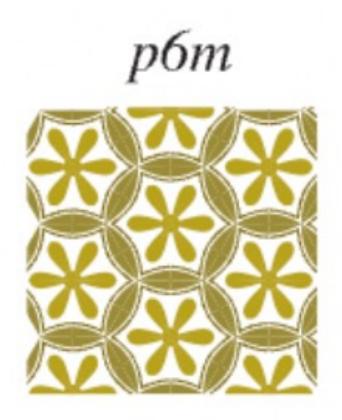
p31m: 120 degree rotation + different reflection

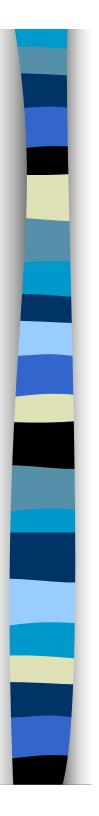
p31m

p6: 60 degree rotation



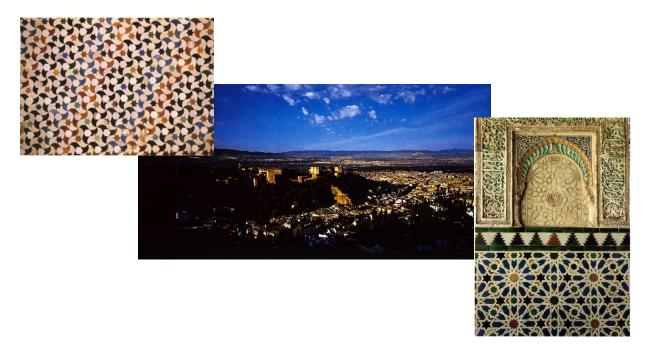
p6m: 60 degree rotation + reflection





Open problem

The Alhambra in Spain is reputed to have all 17 wallpaper tilings somewhere on its walls...



Final question

Find a basic unit or fundamental domain?

